45 research outputs found

    Comment on 'Non-equilibrium thermodynamics of light absorption'

    Get PDF
    A recent paper by Meszéna and Westerhoff (1999 J. Phys. A: Math. Gen. 32 301) has aimed to address what is referred to as a principal question of biological thermodynamics, the possibility of describing photosynthesis in terms of non-equilibrium thermodynamics. The issue is associated with a misrepresentation of the fundamental photophysics involved, and as a result the analysis is invalid

    How Gaussian competition leads to lumpy or uniform species distributions

    Get PDF
    A central model in theoretical ecology considers the competition of a range of species for a broad spectrum of resources. Recent studies have shown that essentially two different outcomes are possible. Either the species surviving competition are more or less uniformly distributed over the resource spectrum, or their distribution is 'lumped' (or 'clumped'), consisting of clusters of species with similar resource use that are separated by gaps in resource space. Which of these outcomes will occur crucially depends on the competition kernel, which reflects the shape of the resource utilization pattern of the competing species. Most models considered in the literature assume a Gaussian competition kernel. This is unfortunate, since predictions based on such a Gaussian assumption are not robust. In fact, Gaussian kernels are a border case scenario, and slight deviations from this function can lead to either uniform or lumped species distributions. Here we illustrate the non-robustness of the Gaussian assumption by simulating different implementations of the standard competition model with constant carrying capacity. In this scenario, lumped species distributions can come about by secondary ecological or evolutionary mechanisms or by details of the numerical implementation of the model. We analyze the origin of this sensitivity and discuss it in the context of recent applications of the model.Comment: 11 pages, 3 figures, revised versio

    Field concentration and temperature dependence of fluorescence polarization of magnetically oriented chloroplasts.

    Get PDF
    Chloroplasts in higher magnetic fields align with their equatorial plane perpendicular to the field. Because of the nonrandom orientation of the chromophores in the membrane the fluorescence radiation will be partially polarized. The chloroplast concentration, magnetic field, and temperature dependence of the fluorescence polarization has been investigated. The results are compared with a simplified model calculation. It is shown that the concentration dependence can be related to the linear dichroism of the fluorescence radiation and self-adsorption. Taking these effects into account results in the calculation of a higher fluorescence polarization (FP) ratio and higher inclination of chlorophyll dipoles to the membrane plane. Analyzing the magnetic field dependence of the FP ratio, we conclude that in a magnetic field not only will be chloroplasts be aligned, but the thylakoid stacks as well. A decrease in the FP ratio was observed around 20 degrees C. It is suggested that this decrease reflects a phase transition in the photosynthetic membrane

    Electrodichroism of Purple Membrane: Ionic Strength Dependence

    No full text
    The dichroism of purple membrane suspension was measured in dc and ac electric fields. From these measurements three parameters can be obtained: the permanent dipole moment, ÎŒ, the electrical polarizability, α, and the retinal angle, ÎŽ, (relative to the membrane normal). The functional dependence of the dichroism on the electric field is analyzed. There is a small decrease (∌2°) in retinal angle going from dark adapted to the light adapted form. No measurable difference in ÎŒ, α, and ÎŽ was found under the photocycle. The dichroism was measured in two different salt solutions (KCl and CaCl(2)) in the range 0-10 mM. The retinal angle increases from 64° to 68° with increasing ionic strength going through a minimum. This is attributed to the changing (decreasing) inner electric field in the membrane. The polarizability, α, consists of two parts. One component is related to the polarization of the purple membrane and the second component to the ionic cloud. The second component decreases with ion concentration approximately as Îș(-3) (Îș is the Debye parameter) in agreement with a model calculation for the polarization of the ionic cloud. The origin of the slightly ionic strength dependent permanent dipole moment is not well understood

    Electrodichroism of Purple Membrane

    No full text
    corecore