24 research outputs found
The Nitric Oxide Pathway Provides Innate Antiviral Protection in Conjunction with the Type I Interferon Pathway in Fibroblasts
The innate host response to virus infection is largely dominated by the production of type I interferon and interferon stimulated genes. In particular, fibroblasts respond robustly to viral infection and to recognition of viral signatures such as dsRNA with the rapid production of type I interferon; subsequently, fibroblasts are a key cell type in antiviral protection. We recently found, however, that primary fibroblasts deficient for the production of interferon, interferon stimulated genes, and other cytokines and chemokines mount a robust antiviral response against both DNA and RNA viruses following stimulation with dsRNA. Nitric oxide is a chemical compound with pleiotropic functions; its production by phagocytes in response to interferon-γ is associated with antimicrobial activity. Here we show that in response to dsRNA, nitric oxide is rapidly produced in primary fibroblasts. In the presence of an intact interferon system, nitric oxide plays a minor but significant role in antiviral protection. However, in the absence of an interferon system, nitric oxide is critical for the protection against DNA viruses. In primary fibroblasts, NF-κB and interferon regulatory factor 1 participate in the induction of inducible nitric oxide synthase expression, which subsequently produces nitric oxide. As large DNA viruses encode multiple and diverse immune modulators to disable the interferon system, it appears that the nitric oxide pathway serves as a secondary strategy to protect the host against viral infection in key cell types, such as fibroblasts, that largely rely on the type I interferon system for antiviral protection
Self Protection from Anti-Viral Responses – Ro52 Promotes Degradation of the Transcription Factor IRF7 Downstream of the Viral Toll-Like Receptors
Ro52 is a member of the TRIM family of single-protein E3 ligases and is also a target for autoantibody production in systemic lupus erythematosus and Sjögren's syndrome. We previously demonstrated a novel function of Ro52 in the ubiquitination and proteasomal degradation of IRF3 following TLR3/4 stimulation. We now present evidence that Ro52 has a similar role in regulating the stability and activity of IRF7. Endogenous immunoprecipitation of Ro52-bound proteins revealed that IRF7 associates with Ro52, an effect which increases following TLR7 and TLR9 stimulation, suggesting that Ro52 interacts with IRF7 post-pathogen recognition. Furthermore, we show that Ro52 ubiquitinates IRF7 in a dose-dependent manner, resulting in a decrease in total IRF7 expression and a subsequent decrease in IFN-α production. IRF7 stability was increased in bone marrow-derived macrophages from Ro52-deficient mice stimulated with imiquimod or CpG-B, consistent with a role for Ro52 in the negative regulation of IRF7 signalling. Taken together, these results suggest that Ro52-mediated ubiquitination promotes the degradation of IRF7 following TLR7 and TLR9 stimulation. As Ro52 is known to be IFN-inducible, this system constitutes a negative-feedback loop that acts to protect the host from the prolonged activation of the immune response
Different Metabolic Responses in α-, β-, and δ-Cells of the Islet of Langerhans Monitored by Redox Confocal Microscopy
Blood glucose homeostasis is mainly achieved by the coordinated function of pancreatic α-, β-, and δ-cells, which secrete glucagon, insulin, and somatostatin, respectively. Each cell type responds to glucose changes with different secretion patterns. Currently, considerable information can be found about the signal transduction mechanisms that lead to glucose-mediated insulin release in the pancreatic β-cell, mitochondrial activation being an essential step. Increases in glucose stimulate the mitochondrial metabolism, activating the tricarboxylic acid cycle and raising the source of redox electron carrier molecules needed for respiratory ATP synthesis. However, little is known about the glucose-induced mitochondrial response of non-β-cells and its role in the stimulus-secretion coupling process. This limited information is probably a result of the scarcity of these cells in the islet, the lack of identification patterns, and the technical limitations of conventional methods. In this study, we used flavin adenine dinucleotide redox confocal microscopy as a noninvasive technique to specifically monitor mitochondrial redox responses in immunoidentified α-, β-, and δ-cells in freshly isolated intact islets and in dispersed cultured cells. We have shown that glucose provokes metabolic changes in β- and δ-cell populations in a dose-dependent manner. Conversely, no significant responses were observed in α-cells, despite the sensitivity of their metabolism to drugs acting on the mitochondrial function, and their intact ability to develop Ca(2+) signals. Identical results were obtained in islets and in cultures of dispersed cells. Our findings indicate metabolic differences in glucose utilization among the α-, β-, and δ-cell populations, which might be important in the signal transduction events that lead to hormone release
TLR9 triggering in Burkitt's lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification
Endemic Burkitt's lymphoma (BL) is considered to preferentially develop in equatorial Africa because of chronic co-infection with Epstein-Barr virus (EBV) and the malaria pathogen Plasmodium falciparum. The interaction and contribution of both pathogens in the oncogenic process are poorly understood. Earlier, we showed that immune activation with a synthetic Toll-like receptor 9 (TLR9) ligand suppresses the initiation of EBV lytic replication in primary human B cells. In this study we investigate the mechanism involved in the suppression of EBV lytic gene expression in BL cell lines. We show that this suppression is dependent on functional TLR9 and MyD88 signaling but independent of downstream signaling elements, including phosphatidylinositol-3 kinase, mitogen-activated protein kinases and nuclear factor-kappaB. We identified TLR9 triggering resulting in histone modifications to negatively affect the activation of the promoter of EBV's master regulatory lytic gene BZLF1. Finally, we show that P. falciparum hemozoin, a natural TLR9 ligand, suppresses induction of EBV lytic gene expression in a dose-dependent manner. Thus, we provide evidence for a possible interaction between P. falciparum and EBV at the B-cell level and the mechanism involved in suppressing lytic and thereby reinforcing latent EBV that has unique oncogenic potential