2,140 research outputs found

    High-resolution K-shell photoabsorption measurements of simple molecules

    Get PDF
    K-shell adsorption spectra of CO, 13C18O, NO, O2, CO2, N2O, C2H2, C2D2, C2H4, C2D4, C2H6, C2D6, measured with unprecedented energy resolution and signal-to-noise ratio are presented. These spectra reveal many new features in core-excited valence and Rydberg states. Detailed vibrational structures are observed in these spectra, providing valuable information on the geometrical and vibrational properties of the core-excited molecules. In addition, C 1s and N 1s core-hole lifetimes are found to be ∼120 and ∼135 meV in these molecules with little dependence on their bonding environments. These results and the tentative peak assignments are discussed briefly in terms of the equivalent core model, multielectron excitations, exchange interactions, and the geometry of the excited molecules

    Modelling of tungsten erosion and deposition in the divertor of JET-ILW in comparison to experimental findings

    Get PDF
    The erosion, transport and deposition of tungsten in the outer divertor of JET-ILW has been studied for an H-Mode discharge with low frequency ELMs. For this specific case with an inter-ELM electron temperature at the strike point of about 20 eV, tungsten sputtering between ELMs is almost exclusively due to beryllium impurity and self-sputtering. However, during ELMs tungsten sputtering due to deuterium becomes important and even dominates. The amount of simulated local deposition of tungsten relative to the amount of sputtered tungsten in between ELMs is very high and reaches values of 99% for an electron density of 5E13 cm(-3) at the strike point and electron temperatures between 10 and 30 eV. Smaller deposition values are simulated with reduced electron density. The direction of the B-field significantly influences the local deposition and leads to a reduction if the E x B drift directs towards the scrape-off-layer. Also, the thermal force can reduce the tungsten deposition, however, an ion temperature gradient of about 0.1 eV/mm or larger is needed for a significant effect. The tungsten deposition simulated during ELMs reaches values of about 98% assuming ELM parameters according to free-streaming model. The measured WI emission profiles in between and within ELMs have been reproduced by the simulation. The contribution to the overall net tungsten erosion during ELMs is about 5 times larger than the one in between ELMs for the studied case. However, this is due to the rather low electron temperature in between ELMs, which leads to deuterium impact energies below the sputtering threshold for tungsten.EURATOM 63305

    Effect of toroidal field ripple on plasma rotation in JET

    Get PDF
    Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude (3) from an average value of M = 0.40-0.55 for operations at the standard JET ripple of 6 = 0.08% to M = 0.25-0.40 for 6 = 0.5% and M = 0.1-0.3 for delta = 1%. TF ripple effects should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes (delta similar to 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect

    Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

    Get PDF
    For the ITER-like wall, the JET mirror link divertor spectroscopy system was redesigned to fully cover the tungsten horizontal strike plate with faster time resolution and improved near-UV performance. Since the ITER-like wall project involves a change in JET from a carbon dominated machine to a beryllium and tungsten dominated machine with residual carbon, the aim of the system is to provide the recycling flux, equivalent, to the impinging deuterium ion flux, the impurity fluxes (C, Be, O) and tungsten sputtering fluxes and hence give information on the tungsten divertor source. In order to do this self-consistently, the system also needs to provide plasma characterization through the deuterium Balmer spectra measurements of electron density and temperature during high density. L-Mode results at the density limit from Stark broadening/line ratio analysis will be presented and compared to Langmuir probe profiles and 2D-tomography of low-n Balmer emission [1]. Comparison with other diagnostics will be vital for modelling attempts with the EDGE2D-EIRENE code[2] as the best possible data sets need to be provided to study detachment behaviour.Comment: 18 pages, 11 figure

    Electronic Medical Record Cancer Incidence over Six Years Comparing New Users of Glargine with New Users of NPH Insulin

    Get PDF
    Background: Recent studies suggested that insulin glargine use could be associated with increased risk of cancer. We compared the incidence of cancer in new users of glargine versus new users of NPH in a longitudinal clinical cohort with diabetes for up to 6 years. Methods and Findings: From all patients who had been regularly followed at Massachusetts General Hospital from 1/01/2005 to 12/31/2010, 3,680 patients who had a medication record for glargine or NPH usage were obtained from the electronic medical record (EMR). From those we selected 539 new glargine users (age: 60.1±13.6 years, BMI: 32.7±7.5 kg/m2) and 343 new NPH users (61.5±14.1 years, 32.7±8.3 kg/m2) who had no prevalent cancer during 19 months prior to glargine or NPH initiation. All incident cancer cases were ascertained from the EMR requiring at least 2 ICD-9 codes within a 2 month period. Insulin exposure time and cumulative dose were validated. The statistical analysis compared the rates of cancer in new glargine vs. new NPH users while on treatment, adjusted for the propensity to receive one or the other insulin. There were 26 and 28 new cancer cases in new glargine and new NPH users for 1559 and 1126 person-years follow-up, respectively. There were no differences in the propensity-adjusted clinical characteristics between groups. The adjusted hazard ratio for the cancer incidence comparing glargine vs. NPH use was 0.65 (95% CI: 0.36–1.19). Conclusions: Insulin glargine is not associated with development of cancers when compared with NPH in this longitudinal and carefully retrieved EMR data

    Genome-Wide Association with Select Biomarker Traits in the Framingham Heart Study

    Get PDF
    BACKGROUND: Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations. METHODS: We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507–1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001. RESULTS: With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at . CONCLUSION: The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC25195); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1); National Institutes of Health (HL064753, HL076784, AG028321, HL71039, 2 K24HL04334, 1K23 HL083102); Doris Duke Charitable Foundation; American Diabetes Association Career Developement Award; National Center for Research Resources (GCRC M01-RR01066); US Department of Agriculture Agricultural Research Service (58-1950-001, 58-1950-401); National Institute of Aging (AG14759

    Experimental distinction of the molecularly induced Balmer emission contribution and its application for inferring molecular divertor density with 2D filtered camera measurements during detachment in JET L-mode plasmas

    Get PDF
    A previously presented model for generating 2D estimates of the divertor plasma conditions at JET from deuterium Balmer line intensity ratios, obtained from tomographic reconstructions of divertor camera images, was amended to consider also the Balmer emission arising from molecular processes. Utilizing the AMJUEL and H2VIBR atomic and molecular databases of EIRENE enabled also inference of the molecular divertor density from the distinguished molecularly induced emission. Analysis of a JET L-mode density scan suggests the molecularly induced emission accounting for up to 60%-70% and 10%-20% of the Balmer D-alpha and D-gamma intensities, respectively, at the onset of detachment, while electron-ion recombination becomes increasingly dominant with deepening detachment. Similar observations were made by post-processing EDGE2D-EIRENE simulations, which indicated significant roles of molecular D-2(+) ions and vibrational excitation of the D-2 molecules as precursors for the molecularly induced emission. The experimentally inferred molecular density at the outer strike point was found to increase monotonously with decreasing strike point temperature, reaching approximately 30%-50% of the local electron density at n(mol,osp) = 1-2 x10(20) m(-3) at T-e,T-osp approximate to 0.7 eV. A further steep increase by a factor of 3-5 was observed with decrease of T-e,T-osp to 0.5 eV. The observations are in qualitative and reasonable quantitative agreement with EDGE2D-EIRENE predictions of n(mol,osp) within the uncertainties of the experimental data.Peer reviewe
    • …
    corecore