444 research outputs found

    Miniaturized dielectric waveguide filters

    Get PDF
    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory

    Individual and combined impacts of carbon dioxide enrichment, heatwaves, flow velocity variability, and fine sediment deposition on stream invertebrate communities

    Get PDF
    Climate change and land‐use change are widely altering freshwater ecosystem functioning and there is an urgent need to understand how these broad stressor categories may interact in future. While much research has focused on mean temperature increases, climate change also involves increasing variability of both water temperature and flow regimes and increasing concentrations of atmospheric CO2, all with potential to alter stream invertebrate communities. Deposited fine sediment is a pervasive land‐use stressor with widespread impacts on stream invertebrates. Sedimentation may be managed at the catchment scale; thus, uncovering interactions with these three key climate stressors may assist mitigation of future threats. This is the first experiment to investigate the individual and combined effects of enriched CO2, heatwaves, flow velocity variability, and fine sediment on realistic stream invertebrate communities. Using 128 mesocosms simulating small stony‐bottomed streams in a 7‐week experiment, we manipulated dissolved CO2 (ambient; enriched), fine sediment (no sediment; 300 g dry sediment), temperature (ambient; two 7‐day heatwaves), and flow velocity (constant; variable). All treatments changed community composition. CO2 enrichment reduced abundances of Orthocladiinae and Chironominae and increased Copepoda abundance. Variable flow velocity had only positive effects on invertebrate abundances (7 of 13 common taxa and total abundance), in contrast to previous experiments showing negative impacts of reduced velocity. CO2 was implicated in most stressor interactions found, with CO2 × sediment interactions being most common. Communities forming under enriched CO2 conditions in sediment‐impacted mesocosms had ~20% fewer total invertebrates than those with either treatment alone. Copepoda abundances doubled in CO2‐enriched mesocosms without sediment, whereas no CO2 effect occurred in mesocosms with sediment. Our findings provide new insights into potential future impacts of climate change and land use in running freshwaters, in particular highlighting the potential for elevated CO2 to interact with fine sediment deposition in unpredictable ways

    Octave bandwidth hybrid-coupled microstrip diplexer for a broadband radio astronomy receiver

    Get PDF
    A new octave bandwidth high selectivity compact microstrip diplexer working in the band from 10 to 20 GHz is presented, intended to be a part of an electro-optical interferometer covering the whole frequency band. The circuit is based on the combination of hybrid couplers and bandpass filters both on the microstrip technology. The diplexer provides two output frequency bands which cover the 10–14 GHz (relative bandwidth of 33%) and the 16–20 GHz (relative bandwidth of 22%) ranges, respectively, with a stop band in between from 14 to 16 GHz. Measured results show a insertion loss level of 3.3 dB for both output bands and high selectivity performance, exhibiting a rejection level between output bands higher than 20 dB and return loss better than 10 dB in all ports.This work has been funded by the Spanish Ministry of Economy, Industry and Competitiveness under Grant No. ESP2015-70646-C2-2-R

    Promoter hypermethylation of SHOX2 and SEPT9 is a potential biomarker for minimally invasive diagnosis in adenocarcinomas of the biliary tract

    Get PDF
    Clinicopathological data of the 20 biliary tract cancer cases and 100 gender- and age-matched controls included in plasma study. (XLSX 116 kb

    Collagen Type XII Is Undetectable in Keratoconus Bowman’s Layer

    Get PDF
    PURPOSE: Corneal biomechanical failure is the hallmark of keratoconus (KC); however, the cause of this failure remains elusive. Collagen type XII ( METHODS: TaqMan quantitative PCR was performed on 31 corneal epithelium samples of progressive KC and myopic control eyes. Tissue microarrays were constructed using full-thickness corneas from 61 KC cases during keratoplasty and 18 non-KC autopsy eyes and stained with an antibody specific to COL12A1. Additionally, RESULTS: COL12A1 expression was reduced at transcript levels in KC epithelium compared to controls (ratio: 0.58, p\u3c0.03). Immunohistochemical studies demonstrated that COL12A1 protein expression in BL was undetectable, with reduced expression in KC epithelium, basement membrane, and stroma. CONCLUSIONS: The apparent absence of COL12A1 in KC BL, together with the functional importance tha

    Highly variable pharmacokinetics of tyramine in humans and polymorphisms in OCT1, CYP2D6, and MAO-A

    Get PDF
    Tyramine, formed by the decarboxylation of tyrosine, is a natural constituent of numerous food products. As an indirect sympathomimetic, it can have potentially dangerous hypertensive effects. In vitro data indicated that the pharmacokinetics of tyramine possibly depend on the organic cation transporter OCT1 genotype and on the CYP2D6 genotype. Since tyramine is a prototypic substrate of monoamine oxidase A (MAO-A), genetic polymorphisms in MAO-A may also be relevant. The aims of this study were to identify to what extent the interindividual variation in pharmacokinetics and pharmacodynamics of tyramine is determined by genetic polymorphisms in OCT1, CYP2D6, and MAO-A. Beyond that, we wanted to evaluate tyramine as probe drug for the in vivo activity of MAO-A and OCT1. Therefore, the pharmacokinetics, pharmacodynamics, and pharmacogenetics of tyramine were studied in 88 healthy volunteers after oral administration of a 400 mg dose. We observed a strong interindividual variation in systemic tyramine exposure, with a mean AUC of 3.74 min*µg/ml and a high mean CL/F ratio of 107 l/min. On average, as much as 76.8% of the dose was recovered in urine in form of the MAO-catalysed metabolite 4-hydroxyphenylacetic acid (4-HPAA), confirming that oxidative deamination by MAO-A is the quantitatively most relevant metabolic pathway. Systemic exposure of 4-HPAA varied only up to 3-fold, indicating no strong heritable variation in peripheral MAO-A activity. Systolic blood pressure increased by more than 10 mmHg in 71% of the volunteers and correlated strongly with systemic tyramine concentration. In less than 10% of participants, individually variable blood pressure peaks by >40 mmHg above baseline were observed at tyramine concentrations of >60 µg/l. Unexpectedly, the functionally relevant polymorphisms in OCT1 and CYP2D6, including the CYP2D6 poor and ultra-rapid metaboliser genotypes, did not significantly affect tyramine pharmacokinetics or pharmacodynamics. Also, the MOA-A genotypes, which had been associated in several earlier studies with neuropsychiatric phenotypes, had no significant effects on tyramine pharmacokinetics or its metabolism to 4-HPAA. Thus, variation in tyramine pharmacokinetics and pharmacodynamics is not explained by obvious genomic variation, and human tyramine metabolism did not indicate the existence of ultra-low or -high MAO-A activity

    Multipoint Schur algorithm and orthogonal rational functions: convergence properties, I

    Full text link
    Classical Schur analysis is intimately connected to the theory of orthogonal polynomials on the circle [Simon, 2005]. We investigate here the connection between multipoint Schur analysis and orthogonal rational functions. Specifically, we study the convergence of the Wall rational functions via the development of a rational analogue to the Szeg\H o theory, in the case where the interpolation points may accumulate on the unit circle. This leads us to generalize results from [Khrushchev,2001], [Bultheel et al., 1999], and yields asymptotics of a novel type.Comment: a preliminary version, 39 pages; some changes in the Introduction, Section 5 (Szeg\H o type asymptotics) is extende

    Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma

    Get PDF
    Interleukin (IL)-5 and IL-13 are thought to play key roles in the pathogenesis of asthma. Although both cytokines use eotaxin to regulate eosinophilia, IL-13 is thought to operate a separate pathway to IL-5 to induce airways hyperreactivity (AHR) in the allergic lung. However, identification of the key pathway(s) used by IL-5 and IL-13 in the disease process is confounded by the failure of anti–IL-5 or anti–IL-13 treatments to completely inhibit the accumulation of eosinophils in lung tissue. By using mice deficient in both IL-5 and eotaxin (IL-5/eotaxin−/−) we have abolished tissue eosinophilia and the induction of AHR in the allergic lung. Notably, in mice deficient in IL-5/eotaxin the ability of CD4+ T helper cell (Th)2 lymphocytes to produce IL-13, a critical regulator of airways smooth muscle constriction and obstruction, was significantly impaired. Moreover, the transfer of eosinophils to IL-5/eotaxin−/− mice overcame the intrinsic defect in T cell IL-13 production. Thus, factors produced by eosinophils may either directly or indirectly modulate the production of IL-13 during Th2 cell development. Our data show that IL-5 and eotaxin intrinsically modulate IL-13 production from Th2 cells and that these signaling systems are not necessarily independent effector pathways and may also be integrated to regulate aspects of allergic disease

    Fine sediment reduces vertical migrations of Gammarus pulex (Crustacea: Amphipoda) in response to surface water loss

    Get PDF
    Surface and subsurface sediments in river ecosystems are recognized as refuges that may promote invertebrate survival during disturbances such as floods and streambed drying. Refuge use is spatiotemporally variable, with environmental factors including substrate composition, in particular the proportion of fine sediment (FS), affecting the ability of organisms to move through interstitial spaces. We conducted a laboratory experiment to examine the effects of FS on the movement of Gammarus pulex Linnaeus (Crustacea: Amphipoda) into subsurface sediments in response to surface water loss. We hypothesized that increasing volumes of FS would impede and ultimately prevent individuals from migrating into the sediments. To test this hypothesis, the proportion of FS (1–2 mm diameter) present within an open gravel matrix (4–16 mm diameter) was varied from 10 to 20% by volume in 2.5% increments. Under control conditions (0% FS), 93% of individuals moved into subsurface sediments as the water level was reduced. The proportion of individuals moving into the subsurface decreased to 74% at 10% FS, and at 20% FS no individuals entered the sediments, supporting our hypothesis. These results demonstrate the importance of reducing FS inputs into river ecosystems and restoring FS-clogged riverbeds, to promote refuge use during increasingly common instream disturbances
    corecore