1,203 research outputs found

    Geometrical effects on the optical properties of quantum dots doped with a single magnetic atom

    Full text link
    The emission spectra of individual self-assembled quantum dots containing a single magnetic Mn atom differ strongly from dot to dot. The differences are explained by the influence of the system geometry, specifically the in-plane asymmetry of the quantum dot and the position of the Mn atom. Depending on both these parameters, one has different characteristic emission features which either reveal or hide the spin state of the magnetic atom. The observed behavior in both zero field and under magnetic field can be explained quantitatively by the interplay between the exciton-manganese exchange interaction (dependent on the Mn position) and the anisotropic part of the electron-hole exchange interaction (related to the asymmetry of the quantum dot).Comment: 5 pages, 5 figures, to be published in Phys. Rev. Let

    Dual-Seq Transcriptomics Reveals The Battle For Iron During Pseudomonas Aeruginosa Acute Murine Pneumonia

    Get PDF
    Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia

    α4β1 integrin and erythropoietin mediate temporally distinct steps in erythropoiesis: integrins in red cell development

    Get PDF
    Erythropoietin (Epo) is essential for the terminal proliferation and differentiation of erythroid progenitor cells. Fibronectin is an important part of the erythroid niche, but its precise role in erythropoiesis is unknown. By culturing fetal liver erythroid progenitors, we show that fibronectin and Epo regulate erythroid proliferation in temporally distinct steps: an early Epo-dependent phase is followed by a fibronectin-dependent phase. In each phase, Epo and fibronectin promote expansion by preventing apoptosis partly through bcl-xL. We show that α4, α5, and β1 are the principal integrins expressed on erythroid progenitors; their down-regulation during erythropoiesis parallels the loss of cell adhesion to fibronectin. Culturing erythroid progenitors on recombinant fibronectin fragments revealed that only substrates that engage α4β1-integrin support normal proliferation. Collectively, these data suggest a two-phase model for growth factor and extracellular matrix regulation of erythropoiesis, with an early Epo-dependent, integrin-independent phase followed by an Epo-independent, α4β1-integrin–dependent phase

    Optical Study of GaAs quantum dots embedded into AlGaAs nanowires

    Full text link
    We report on the photoluminescence characterization of GaAs quantum dots embedded into AlGaAs nano-wires. Time integrated and time resolved photoluminescence measurements from both an array and a single quantum dot/nano-wire are reported. The influence of the diameter sizes distribution is evidenced in the optical spectroscopy data together with the presence of various crystalline phases in the AlGaAs nanowires.Comment: 5 page, 5 figure

    New Halogenated Phenylbacteriochlorins and Their Efficiency in Singlet-Oxygen Sensitization

    Get PDF
    Halogenated phenylbacteriochlorins are synthesized with high yields in a two-step procedure. They have strong absorbances in the red and are very stable to air and light at room temperature. Flash photolysis measurements show that the triplet states of these bacteriochlorins have 30 ÎĽs lifetimes in deaerated toluene, that are quenched with diffusion-controlled rate constants by molecular oxygen. Time-resolved photoacoustic measurements, with nanosecond and nanocalorie resolution, show that these bacteriochlorins sensitize the formation of singlet oxygen with nearly unity quantum yield. However, singlet-oxygen phosphorescence measurements indicate that physical quenching occurs before the singlet-oxygen molecules diffuse into solution, and nearly half of the sensitized singlet states are lost

    Recent developments for beam intensity increase operation

    Get PDF
    International audienceThe aim of the beam intensity increase operation (THI project) is to multiply the present intensities for lightest ions by a factor of fifteen in order to reach maximum power of six kilowatts [1]. The main objective is the production of large amounts of rare isotopes, either with SISSI (device intended for producing radioactive beams), or with SPIRAL (production and acceleration of radioactive ion beams). As part of this THI project, new developments have been required such as spiral scanners, for beanl profile measurements, and safety system to protect equipments against beam losses. Other developments are being carried on to improve the high intensity beam operation

    Phase diagrams of magnetopolariton gases

    Full text link
    The magnetic field effect on phase transitions in electrically neutral bosonic systems is much less studied than those in fermionic systems, such as superconducting or ferromagnetic phase transitions. Nevertheless, composite bosons are strongly sensitive to magnetic fields: both their internal structure and motion as whole particles may be affected. A joint effort of ten laboratories has been focused on studies of polariton lasers, where non-equilibrium Bose-Einstein condensates of bosonic quasiparticles, exciton-polaritons, may appear or disappear under an effect of applied magnetic fields. Polariton lasers based on pillar or planar microcavities were excited both optically and electrically. In all cases a pronounced dependence of the onset to lasing on the magnetic field has been observed. For the sake of comparison, photon lasing (lasing by an electron-hole plasma) in the presence of a magnetic field has been studied on the same samples as polariton lasing. The threshold to photon lasing is essentially governed by the excitonic Mott transition which appears to be sensitive to magnetic fields too. All the observed experimental features are qualitatively described within a uniform model based on coupled diffusion equations for electrons, holes and excitons and the Gross-Pitaevskii equation for exciton-polariton condensates. Our research sheds more light on the physics of non-equilibrium Bose-Einstein condensates and the results manifest high potentiality of polariton lasers for spin-based quantum logic applications.Comment: 21 pages, 11 figure

    Immunomodulatory therapies for the treatment of SARS-CoV-2 infection: an update of the systematic literature review to inform EULAR points to consider

    Get PDF
    OBJECTIVE: To update the EULAR 2020 systematic literature review (SLR) on efficacy and safety of immunomodulatory agents in SARS-CoV-2 infection. METHODS: As part of a EULAR taskforce, a systematic literature search update was conducted from 11 December 2020 to 14 July 2021. Two reviewers independently identified eligible studies and extracted data on efficacy and safety of immunomodulatory agents used therapeutically in SARS-CoV-2 infection at any stage of disease. The risk of bias (RoB) was assessed with validated tools. RESULTS: Of the 26 959 records, 520 articles were eligible for inclusion. Studies were mainly at high or unclear RoB. New randomised controlled trials (RCTs) on tocilizumab clarified its benefit in patients with severe and critical COVID-19, mainly if associated with glucocorticoids. There are emergent data on the usefulness of baricitinib and tofacitinib in severe COVID-19. Other therapeutic strategies such as the use of convalescent plasma and anti-SARS-CoV-2 monoclonal antibodies showed efficacy in subjects not mounting normal anti-SARS-CoV-2 antibody responses. CONCLUSION: This new SLR confirms that some immunomodulators (tocilizumab and JAK inhibitors) have a role for treating severe and critical COVID-19. Although better evidence is available compared with the previous SLR, the need of RCT with combination therapy (glucocorticoids+anti-cytokines) versus monotherapy with glucocorticoids still remains alongside the need for standardisation of inclusion criteria and outcomes to ultimately improve the care and prognosis of affected people. This SLR informed the 2021 update of the EULAR points to consider on the use of immunomodulatory therapies in COVID-19
    • …
    corecore