83 research outputs found

    Prevalence of Coxielle Burnetii anbitodies in Danish Dairy herds

    Get PDF
    <p>Abstract</p> <p>During recent years in Denmark higher rates of antibodies to <it>Coxiella burnetii </it>have been detected in animals and humans than previously reported. A study based on bulk tank milk samples from 100 randomly selected dairy herds was performed to estimate the prevalence and geographical distribution of antibody positive dairy herds. Using the CHEKIT Q-Fever Antibody ELISA Test Kit (IDEXX), the study demonstrated a prevalence of 59% antibody positive herds, 11% antibody intermediate herds and 30% antibody negative herds based on the instructions provided by the manufacturer. The geographical distribution does not indicate a relationship between the regional density of dairy farms and the prevalence of antibody positive dairy farms. The result supports the hypothesis of an increase in the prevalence of positive dairy herds compared to previous years.</p

    Virulence of 32 Salmonella Strains in Mice

    Get PDF
    Virulence and persistence in the BALB/c mouse gut was tested for 32 strains of Salmonella enterica for which genome sequencing is complete or underway, including 17 serovars within subspecies I (enterica), and two representatives of each of the other five subspecies. Only serovar Paratyphi C strain BAA1715 and serovar Typhimurium strain 14028 were fully virulent in mice. Three divergent atypical Enteritidis strains were not virulent in BALB/c, but two efficiently persisted. Most of the other strains in all six subspecies persisted in the mouse intestinal tract for several weeks in multiple repeat experiments although the frequency and level of persistence varied considerably. Strains with heavily degraded genomes persisted very poorly, if at all. None of the strains tested provided immunity to Typhimurium infection. These data greatly expand on the known significant strain-to-strain variation in mouse virulence and highlight the need for comparative genomic and phenotypic studies

    Weekly full-dose gemcitabine and single-dose cisplatin with concurrent radiotherapy in patients with locally advanced pancreatic cancer

    Get PDF
    The aim of this study was to evaluate the efficacy and the toxicity of a full dose of gemcitabine and a single dose of cisplatin with concurrent radiotherapy in patients with locally advanced pancreatic cancer. Forty-one patients with locally advanced pancreatic cancer were enrolled. Patients received gemcitabine (1000 mg m−2 on days 1, 8, 15, 29, and 36) and cisplatin (70 mg m−2 on days 1 and 29) with concurrent radiotherapy (45 Gy in 25 fractions). Treatment was completed in 38 out of 41 patients (92.7%). The overall response rate was 24.4% (two complete and eight partial). Six patients (14.6%) underwent definite pancreatic resection and four had negative surgical margins. The intention of the treatment analysis showed that the median survival time and median time to tumour progression were 16.7 and 8.9 months. The 1- and 2-year survival rates were 63.3 and 27.9%, respectively. Overall survival was significantly longer in the low baseline CA19-9 group and therapeutic responders. Toxicities were tolerable and successfully managed by conservative treatments. The therapeutic scheme of a weekly full dose of gemcitabine and a single dose of cisplatin combined with external radiation is effective and might prolong the survival of patients with locally advanced pancreatic cancer

    Role of deep sponge grounds in the Mediterranean Sea: a case study in southern Italy

    Get PDF
    The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 +/- 1.1 specimens m(-2) (approximately 230 gWW m(-2) of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 +/- 0.7 specimens m(-2), approximately 315 gWW m(-2) of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m(-2)). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic-pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 +/- 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter

    Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter

    Get PDF
    Different studies have reported the prevalence of Salmonella in turtles and its role in reptile-associated salmonellosis in humans, but there is a lack of scientific literature related with the epidemiology of Campylobacter in turtles. The aim of this study was to evaluate the prevalence of Campylobacter and Salmonella in free-living native (Emys orbicularis, n=83) and exotic (Trachemys scripta elegans, n=117) turtles from 11 natural ponds in Eastern Spain. In addition, different types of samples (cloacal swabs, intestinal content and water from Turtle containers) were compared. Regardless of the turtle species, natural ponds where individuals were captured and the type of sample taken, Campylobacter was not detected. Salmonella was isolated in similar proportions in native (8.0±3.1%) and exotic (15.0±3.3%) turtles (p=0.189). The prevalence of Salmonella positive turtles was associated with the natural ponds where animals were captured. Captured turtles from 8 of the 11 natural ponds were positive, ranged between 3.0±3.1% and 60.0±11.0%. Serotyping revealed 8 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 21), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 3), and S. enterica subsp. houtenae (n = 1). Two serovars were predominant: S. Thompson (n=16) and S. typhimurium (n=3). In addition, there was an effect of sample type on Salmonella detection. The highest isolation of Salmonella was obtained from intestinal content samples (12.0±3.0%), while lower percentages were found for water from the containers and cloacal swabs (8.0±2.5% and 3.0±1.5%, respectively). Our results imply that free-living turtles are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out turtles as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results.This work was supported by the Conselleria de Infraestructura, Territorio y Medio Ambiente for their assistance and financial support (Life09-Trachemys, Resolution 28/02/12 CITMA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Marín, C.; Ingresa-Capaccioni, S.; González Bodí, S.; Marco Jiménez, F.; Vega Garcia, S. (2013). Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter. PLoS ONE. 8(8):1-6. https://doi.org/10.1371/journal.pone.0072350S1688(2012). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food‐borne Outbreaks in 2010. EFSA Journal, 10(3). doi:10.2903/j.efsa.2012.2597Kapperud, G. (2003). Factors Associated with Increased and Decreased Risk of Campylobacter Infection: A Prospective Case-Control Study in Norway. American Journal of Epidemiology, 158(3), 234-242. doi:10.1093/aje/kwg139Mermin, J., Hutwagner, L., Vugia, D., Shallow, S., Daily, P., … Bender, J. (2004). Reptiles, Amphibians, and HumanSalmonellaInfection: A Population‐Based, Case‐Control Study. Clinical Infectious Diseases, 38(s3), S253-S261. doi:10.1086/381594De Jong, B., Andersson, Y., & Ekdahl, K. (2005). Effect of Regulation and Education on Reptile-associated Salmonellosis. Emerging Infectious Diseases, 11(3), 398-403. doi:10.3201/eid1103.040694NAKADAI, A., KUROKI, T., KATO, Y., SUZUKI, R., YAMAI, S., YAGINUMA, C., … HAYASHIDANI, H. (2005). Prevalence of Salmonella spp. in Pet Reptiles in Japan. Journal of Veterinary Medical Science, 67(1), 97-101. doi:10.1292/jvms.67.97Lafuente, S., Bellido, J. B., Moraga, F. A., Herrera, S., Yagüe, A., Montalvo, T., … Caylà, J. A. (2013). Salmonella paratyphi B and Salmonella litchfield outbreaks associated with pet turtle exposure in Spain. Enfermedades Infecciosas y Microbiología Clínica, 31(1), 32-35. doi:10.1016/j.eimc.2012.05.013Van PELT, W., de WIT, M. A. S., WANNET, W. J. B., LIGTVOET, E. J. J., WIDDOWSON, M. A., & van DUYNHOVEN, Y. T. H. P. (2003). Laboratory surveillance of bacterial gastroenteric pathogens in The Netherlands, 1991–2001. Epidemiology and Infection, 130(3), 431-441. doi:10.1017/s0950268803008392Havelaar, A. H., Haagsma, J. A., Mangen, M.-J. J., Kemmeren, J. M., Verhoef, L. P. B., Vijgen, S. M. C., … van Pelt, W. (2012). Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology, 156(3), 231-238. doi:10.1016/j.ijfoodmicro.2012.03.029DOORDUYN, Y., VAN PELT, W., SIEZEN, C. L. E., VAN DER HORST, F., VAN DUYNHOVEN, Y. T. H. P., HOEBEE, B., & JANSSEN, R. (2007). Novel insight in the association between salmonellosis or campylobacteriosis and chronic illness, and the role of host genetics in susceptibility to these diseases. Epidemiology and Infection, 136(9), 1225-1234. doi:10.1017/s095026880700996xHAAGSMA, J. A., SIERSEMA, P. D., DE WIT, N. J., & HAVELAAR, A. H. (2010). Disease burden of post-infectious irritable bowel syndrome in The Netherlands. Epidemiology and Infection, 138(11), 1650-1656. doi:10.1017/s0950268810000531Allos, B. M., & Blaser, M. J. (1995). Campylobacter jejuni and the Expanding Spectrum of Related Infections. Clinical Infectious Diseases, 20(5), 1092-1101. doi:10.1093/clinids/20.5.1092Friedman, C. R., Hoekstra, R. M., Samuel, M., Marcus, R., Bender, J., … Shiferaw, B. (2004). Risk Factors for SporadicCampylobacterInfection in the United States: A Case‐Control Study in FoodNet Sites. Clinical Infectious Diseases, 38(s3), S285-S296. doi:10.1086/381598STUDAHL, A., & ANDERSSON, Y. (2000). Risk factors for indigenous campylobacter infection: a Swedish case-control study. Epidemiology and Infection, 125(2), 269-275. doi:10.1017/s0950268899004562NEIMANN, J., ENGBERG, J., MØLBAK, K., & WEGENER, H. C. (2003). A case–control study of risk factors for sporadic campylobacter infections in Denmark. Epidemiology and Infection, 130(3), 353-366. doi:10.1017/s0950268803008355DOORDUYN, Y., VAN DEN BRANDHOF, W. E., VAN DUYNHOVEN, Y. T. H. P., BREUKINK, B. J., WAGENAAR, J. A., & VAN PELT, W. (2010). Risk factors for indigenous Campylobacter jejuni and Campylobacter coli infections in The Netherlands: a case-control study. Epidemiology and Infection, 138(10), 1391-1404. doi:10.1017/s095026881000052xSchroter, M., Roggentin, P., Hofmann, J., Speicher, A., Laufs, R., & Mack, D. (2004). Pet Snakes as a Reservoir for Salmonella enterica subsp. diarizonae (Serogroup IIIb): a Prospective Study. Applied and Environmental Microbiology, 70(1), 613-615. doi:10.1128/aem.70.1.613-615.2004Van Meervenne, E., Botteldoorn, N., Lokietek, S., Vatlet, M., Cupa, A., Naranjo, M., … Bertrand, S. (2009). Turtle-associated Salmonella septicaemia and meningitis in a 2-month-old baby. Journal of Medical Microbiology, 58(10), 1379-1381. doi:10.1099/jmm.0.012146-0Williams, L. P. (1965). Pet Turtles as a Cause of Human Salmonellosis. JAMA: The Journal of the American Medical Association, 192(5), 347. doi:10.1001/jama.1965.03080180005001Feeley, J. C., & Treger, M. D. (1969). Penetration of Turtle Eggs by Salmonella braenderup. Public Health Reports (1896-1970), 84(2), 156. doi:10.2307/4593527Mermin, J., Hoar, B., & Angulo, F. J. (1997). Iguanas and Salmonella Marina Infection in Children: A Reflection of the Increasing Incidence of Reptile-associated Salmonellosis in the United States. PEDIATRICS, 99(3), 399-402. doi:10.1542/peds.99.3.399Rodgers, G. L., Long, S. S., Smergel, E., & Dampier, C. (2002). Salmonella Infection Associated With a Pet Lizard in Siblings With Sickle Cell Anemia: An Avoidable Risk. Journal of Pediatric Hematology/Oncology, 24(1), 75-76. doi:10.1097/00043426-200201000-00020Tu, Z.-C., Zeitlin, G., Gagner, J.-P., Keo, T., Hanna, B. A., & Blaser, M. J. (2004). Campylobacter fetus of Reptile Origin as a Human Pathogen. Journal of Clinical Microbiology, 42(9), 4405-4407. doi:10.1128/jcm.42.9.4405-4407.2004Hidalgo-Vila, J., Díaz-Paniagua, C., Pérez-Santigosa, N., de Frutos-Escobar, C., & Herrero-Herrero, A. (2008). Salmonella in free-living exotic and native turtles and in pet exotic turtles from SW Spain. Research in Veterinary Science, 85(3), 449-452. doi:10.1016/j.rvsc.2008.01.011Harris, J. R., Neil, K. P., Behravesh, C. B., Sotir, M. J., & Angulo, F. J. (2010). Recent Multistate Outbreaks of HumanSalmonellaInfections Acquired from Turtles: A Continuing Public Health Challenge. Clinical Infectious Diseases, 50(4), 554-559. doi:10.1086/649932Geue, L., & Löschner, U. (2002). Salmonella enterica in reptiles of German and Austrian origin. Veterinary Microbiology, 84(1-2), 79-91. doi:10.1016/s0378-1135(01)00437-0Sánchez-Jiménez, M. M., Rincón-Ruiz, P. A., Duque, S., Giraldo, M. A., Ramírez-Monroy, D. M., Jaramillo, G., & Cardona-Castro, N. (2011). Salmonella enterica in semi-aquatic turtles in Colombia. The Journal of Infection in Developing Countries, 5(05), 361-364. doi:10.3855/jidc.1126HEALTH SURVEY OF WILD AND CAPTIVE BOG TURTLES (CLEMMYS MUHLENBERGII) IN NORTH CAROLINA AND VIRGINIA. (2002). Journal of Zoo and Wildlife Medicine, 33(4), 311-316. doi:10.1638/1042-7260(2002)033[0311:hsowac]2.0.co;2Richards, J. M., Brown, J. D., Kelly, T. R., Fountain, A. L., & Sleeman, J. M. (2004). ABSENCE OF DETECTABLE SALMONELLA CLOACAL SHEDDING IN FREE-LIVING REPTILES ON ADMISSION TO THE WILDLIFE CENTER OF VIRGINIA. Journal of Zoo and Wildlife Medicine, 35(4), 562-563. doi:10.1638/03-070Hidalgo-Vila, J., Díaz-Paniagua, C., de Frutos-Escobar, C., Jiménez-Martínez, C., & Pérez-Santigosa, N. (2007). Salmonella in free living terrestrial and aquatic turtles. Veterinary Microbiology, 119(2-4), 311-315. doi:10.1016/j.vetmic.2006.08.012Acheson, D., & Allos, B. M. (2001). Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clinical Infectious Diseases, 32(8), 1201-1206. doi:10.1086/319760Briones, V., Tellez, S., Goyache, J., Ballesteros, C., del Pilar Lanzarot, M., Dominguez, L., & Fernandez-Garayzabal, J. F. (2004). Salmonella diversity associated with wild reptiles and amphibians in Spain. Environmental Microbiology, 6(8), 868-871. doi:10.1111/j.1462-2920.2004.00631.xMan, S. M. (2011). The clinical importance of emerging Campylobacter species. Nature Reviews Gastroenterology & Hepatology, 8(12), 669-685. doi:10.1038/nrgastro.2011.191Ugarte-Ruiz, M., Gómez-Barrero, S., Porrero, M. C., Álvarez, J., García, M., Comerón, M. C., … Domínguez, L. (2012). Evaluation of four protocols for the detection and isolation of thermophilic Campylobacter from different matrices. Journal of Applied Microbiology, 113(1), 200-208. doi:10.1111/j.1365-2672.2012.05323.xJeffrey, J. S., Tonooka, K. H., & Lozanot, J. (2001). Prevalence of Campylobacter spp. from Skin, Crop, and Intestine of Commercial Broiler Chicken Carcasses at Processing. Poultry Science, 80(9), 1390-1392. doi:10.1093/ps/80.9.1390Perko-Mäkelä, P., Isohanni, P., Katzav, M., Lund, M., Hänninen, M.-L., & Lyhs, U. (2009). A longitudinal study of Campylobacter distribution in a turkey production chain. Acta Veterinaria Scandinavica, 51(1). doi:10.1186/1751-0147-51-18Saelinger, C. A., Lewbart, G. A., Christian, L. S., & Lemons, C. L. (2006). Prevalence ofSalmonellaspp in cloacal, fecal, and gastrointestinal mucosal samples from wild North American turtles. Journal of the American Veterinary Medical Association, 229(2), 266-268. doi:10.2460/javma.229.2.266Chambers, D. L., & Hulse, A. C. (2006). Salmonella Serovars in the Herpetofauna of Indiana County, Pennsylvania. Applied and Environmental Microbiology, 72(5), 3771-3773. doi:10.1128/aem.72.5.3771-3773.2006Gaertner, J. P., Hahn, D., Jackson, J., Forstner, M. R. J., & Rose, F. L. (2008). Detection of Salmonellae in Captive and Free-Ranging Turtles Using Enrichment Culture and Polymerase Chain Reaction. Journal of Herpetology, 42(2), 223-231. doi:10.1670/07-1731.1Magnino, S., Colin, P., Dei-Cas, E., Madsen, M., McLauchlin, J., Nöckler, K., … Van Peteghem, C. (2009). Biological risks associated with consumption of reptile products. International Journal of Food Microbiology, 134(3), 163-175. doi:10.1016/j.ijfoodmicro.2009.07.001XIA, X., ZHAO, S., SMITH, A., MCEVOY, J., MENG, J., & BHAGWAT, A. (2009). Characterization of Salmonella isolates from retail foods based on serotyping, pulse field gel electrophoresis, antibiotic resistance and other phenotypic properties. International Journal of Food Microbiology, 129(1), 93-98. doi:10.1016/j.ijfoodmicro.2008.11.007Franco, A., Hendriksen, R. S., Lorenzetti, S., Onorati, R., Gentile, G., Dell’Omo, G., … Battisti, A. (2011). Characterization of Salmonella Occurring at High Prevalence in a Population of the Land Iguana Conolophus subcristatus in Galápagos Islands, Ecuador. PLoS ONE, 6(8), e23147. doi:10.1371/journal.pone.0023147Scheelings, T. F., Lightfoot, D., & Holz, P. (2011). PREVALENCE OF SALMONELLA IN AUSTRALIAN REPTILES. Journal of Wildlife Diseases, 47(1), 1-11. doi:10.7589/0090-3558-47.1.1Pasmans, F., Blahak, S., Martel, A., & Pantchev, N. (2008). Introducing reptiles into a captive collection: The role of the veterinarian. The Veterinary Journal, 175(1), 53-68. doi:10.1016/j.tvjl.2006.12.009Strohl, P., Tilly, B., Fremy, S., Brisabois, A., & Guerin-Faublee, V. (2004). Prevalence of Salmonella shedding in faeces by captive chelonians. Veterinary Record, 154(2), 56-58. doi:10.1136/vr.154.2.5

    Morphology of the larva and ancestrula of Myriapora truncata (Bryozoa, Cheilostomatida).

    No full text
    During an essay to rear in aquarium some colonies of the Mediterranean erect bryozoan Myriapora truncata (Gymnolaemata, Cheilostomatida, Ascophorina, Myriaporidae) it was possible to study its larval and ancestrular morphology by scanning electron microscope (SEM) and by light microscope. The different phases of metamorphosis, giving origin to the preancestrula and the ancestrula, were also investigated. The larva of M. truncata is short-lived, lecithotrophic, and of the coronate type, with expanded corona and small pallial sinus (AEO/ps type, according to Zimmer & Woollacott; VB type, according to d\u2019Hondt). Its morphology, life and metamorphosis appear very similar to those of other well described cheilostome larvae (Neocheilostomida sensu d\u2019Hondt). But, unlike in the other known species of this group, the ancestrula derived from metamorphosis is an \u2018ancestrular twin\u2019, in which two zooids simultaneously develop; these can form in two possible reciprocal orientations (same\u2014ipsolateral\u2014or opposite\u2014contralateral\u2014in the direction of growth)

    Finding of Geodia (Demospongiae) sterrasters in the Upper Miocene of Cappella Montei (Alessandria)and comparison with living forms

    No full text
    corecore