8,392 research outputs found

    Quantum information analysis of electronic states at different molecular structures

    Full text link
    We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization. We also discuss the application of the configuration interaction based dynamically extended active space procedure which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures to a great extent. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal orbital ordering and carry out efficient calculations on transition metal clusters. We propose a recipe to perform DMRG calculations in a black-box fashion and we point out the connections of our work to other tensor network state approaches

    The ROCK inhibitor Fasudil prevents chronic restraint stress-induced depressive-like behaviors and dendritic spine loss in rat hippocampus

    Get PDF
    Indexación: Web of Science; Scopus.Background: Dendritic arbor simplification and dendritic spine loss in the hippocampus, a limbic structure implicated in mood disorders, are assumed to contribute to symptoms of depression. These morphological changes imply modifications in dendritic cytoskeleton. Rho GTPases are regulators of actin dynamics through their effector Rho kinase. We have reported that chronic stress promotes depressive-like behaviors in rats along with dendritic spine loss in apical dendrites of hippocampal pyramidal neurons, changes associated with Rho kinase activation. The present study proposes that the Rho kinase inhibitor Fasudil may prevent the stress-induced behavior and dendritic spine loss. Methods: Adult male Sprague-Dawley rats were injected with saline or Fasudil (i.p., 10 mg/kg) starting 4 days prior to and maintained during the restraint stress procedure (2.5 h/d for 14 days). Nonstressed control animals were injected with saline or Fasudil for 18 days. At 24 hours after treatment, forced swimming test, Golgi-staining, and immuno-western blot were performed. Results: Fasudil prevented stress-induced immobility observed in the forced swimming test. On the other hand, Fasudiltreated control animals showed behavioral patterns similar to those of saline-treated controls. Furthermore, we observed that stress induced an increase in the phosphorylation of MYPT1 in the hippocampus, an exclusive target of Rho kinase. This change was accompanied by dendritic spine loss of apical dendrites of pyramidal hippocampal neurons. Interestingly, increased pMYPT1 levels and spine loss were both prevented by Fasudil administration. Conclusion: Our findings suggest that Fasudil may prevent the development of abnormal behavior and spine loss induced by chronic stress by blocking Rho kinase activity.https://academic.oup.com/ijnp/article/20/4/336/263217

    Chronic Stress Triggers Expression of Immediate Early Genes and Differentially Affects the Expression of AMPA and NMDA Subunits in Dorsal and Ventral Hippocampus of Rats

    Get PDF
    Indexación: Web of Science; Scopus.Previous studies in rats have demonstrated that chronic restraint stress triggers anhedonia, depressive-like behaviors, anxiety and a reduction in dendritic spine density in hippocampal neurons. In this study, we compared the effect of repeated stress on the expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits in dorsal and ventral hippocampus (VH). Adult male Sprague-Dawley rats were randomly divided into control and stressed groups, and were daily restrained in their motion (2.5 h/day) during 14 days. We found that chronic stress promotes an increase in c-Fos mRNA levels in both hippocampal areas, although it was observed a reduction in the immunoreactivity at pyramidal cell layer. Furthermore, Arc mRNAs levels were increased in both dorsal and VH, accompanied by an increase in Arc immunoreactivity in dendritic hippocampal layers. Furthermore, stress triggered a reduction in PSD-95 and NR1 protein levels in whole extract of dorsal and VH. Moreover, a reduction in NR2A/NR2B ratio was observed only in dorsal pole. In synaptosomal fractions, we detected a rise in NR1 in dorsal hippocampus (DH). By indirect immunofluorescence we found that NR1 subunits rise, especially in neuropil areas of dorsal, but not VH. In relation to AMPA receptor (AMPAR) subunits, chronic stress did not trigger any change, either in dorsal or ventral hippocampal areas. These data suggest that DH is more sensitive than VH to chronic stress exposure, mainly altering the expression of NMDA receptor (NMDAR) subunits, and probably favors changes in the configuration of this receptor that may influence the function of this area.https://www.frontiersin.org/articles/10.3389/fnmol.2017.00244/ful

    On microphysical processes of noctilucent clouds (NLC): Observations and modeling of mean and width of the particle size-distribution

    Get PDF
    Noctilucent clouds (NLC) in the polar summer mesopause region have been observed in Norway (69° N, 16° E) between 1998 and 2009 by 3-color lidar technique. Assuming a mono-modal Gaussian size distribution we deduce mean and width of the particle sizes throughout the clouds. We observe a quasi linear relationship between distribution width and mean of the particle size at the top of the clouds and a deviation from this behavior for particle sizes larger than 40 nm, most often in the lower part of the layer. The vertically integrated particle properties show that 65% of the data follows the linear relationship with a slope of 0.42±0.02 for mean particle sizes up to 40 nm. For the vertically resolved particle properties (Δz = Combining double low line 0.15 km) the slope is comparable and about 0.39±0.03. For particles larger than 40 nm the distribution width becomes nearly independent of particle size and even decreases in the lower part of the layer. We compare our observations to microphysical modeling of noctilucent clouds and find that the distribution width depends on turbulence, the time that turbulence can act (cloud age), and the sampling volume/time (atmospheric variability). The model results nicely reproduce the measurements and show that the observed slope can be explained by eddy diffusion profiles as observed from rocket measurements. © 2010 Author(s)

    Finding local community structure in networks

    Full text link
    Although the inference of global community structure in networks has recently become a topic of great interest in the physics community, all such algorithms require that the graph be completely known. Here, we define both a measure of local community structure and an algorithm that infers the hierarchy of communities that enclose a given vertex by exploring the graph one vertex at a time. This algorithm runs in time O(d*k^2) for general graphs when dd is the mean degree and k is the number of vertices to be explored. For graphs where exploring a new vertex is time-consuming, the running time is linear, O(k). We show that on computer-generated graphs this technique compares favorably to algorithms that require global knowledge. We also use this algorithm to extract meaningful local clustering information in the large recommender network of an online retailer and show the existence of mesoscopic structure.Comment: 7 pages, 6 figure

    Approximating Spectral Impact of Structural Perturbations in Large Networks

    Full text link
    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table

    Finding community structure in very large networks

    Full text link
    The discovery and analysis of community structure in networks is a topic of considerable recent interest within the physics community, but most methods proposed so far are unsuitable for very large networks because of their computational cost. Here we present a hierarchical agglomeration algorithm for detecting community structure which is faster than many competing algorithms: its running time on a network with n vertices and m edges is O(m d log n) where d is the depth of the dendrogram describing the community structure. Many real-world networks are sparse and hierarchical, with m ~ n and d ~ log n, in which case our algorithm runs in essentially linear time, O(n log^2 n). As an example of the application of this algorithm we use it to analyze a network of items for sale on the web-site of a large online retailer, items in the network being linked if they are frequently purchased by the same buyer. The network has more than 400,000 vertices and 2 million edges. We show that our algorithm can extract meaningful communities from this network, revealing large-scale patterns present in the purchasing habits of customers

    Stanilov-Tsankov-Videv Theory

    Get PDF
    We survey some recent results concerning Stanilov-Tsankov-Videv theory, conformal Osserman geometry, and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of the manifold.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Updated NNLO QCD predictions for the weak radiative B-meson decays

    Get PDF
    Weak radiative decays of the B mesons belong to the most important flavor changing processes that provide constraints on physics at the TeV scale. In the derivation of such constraints, accurate standard model predictions for the inclusive branching ratios play a crucial role. In the current Letter we present an update of these predictions, incorporating all our results for the O(alpha_s^2) and lower-order perturbative corrections that have been calculated after 2006. New estimates of nonperturbative effects are taken into account, too. For the CP- and isospin-averaged branching ratios, we find B_{s gamma} = (3.36 +_ 0.23) * 10^-4 and B_{d gamma} = 1.73^{+0.12}_{-0.22} * 10^-5, for E_gamma > 1.6GeV. Both results remain in agreement with the current experimental averages. Normalizing their sum to the inclusive semileptonic branching ratio, we obtain R_gamma = ( B_{s gamma} + B_{d gamma})/B_{c l nu} = (3.31 +_ 0.22) * 10^-3. A new bound from B_{s gamma} on the charged Higgs boson mass in the two-Higgs-doublet-model II reads M_{H^+} > 480 GeV at 95%C.L.Comment: journal version, 5 pages, no figure
    corecore