# BIOCHEMISTRY AND METABOLISM OF PLANT LIPIDS

Proceedings of the 5th International Symposium on the Biochemistry and Metabolism of Plant Lipids held in Groningen, The Netherlands, June 7-10, 1982.

Editors
J.F.G.M. Wintermans
and
P.J.C. Kuiper



1982

ELSEVIER BIOMEDICAL PRESS AMSTERDAM · NEW YORK · OXFORD

## **DEVELOPMENTS IN PLANT BIOLOGY**

## **VOLUME 8**

| Other volumes in this series: |                                                                                                                       |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Volume 1                      | Plant Mitochondria G. Ducet and C. Lance editors, 1978                                                                |
| Volume 2                      | Chloroplast Development<br>G. Akoyunoglou and J. H. Argyroudi-Akoyunoglou editors, 1978                               |
| Volume 3                      | Advances in the Biochemistry and Physiology of Plant Lipids<br>Lars-Åke Appelqvist and Conny Liljenberg editors, 1979 |
| Volume 4                      | Plant Membrane Transport: Current Conceptual Issues R. M. Spanswick, W. J. Lucas and J. Dainty editors, 1980          |
| Volume 5                      | Plant Cell Cultures: Results and Perspectives<br>F. Sala, B. Parisi, R. Cella and O. Ciferri editors, 1980            |
| Volume 6                      | Biogenesis and Function of Plant Lipids P. Mazliak, P. Benveniste, C. Costes and R. Douce editors, 1980               |
| Volume 7                      | Plasmalemma and Tonoplast: Their Functions in the Plant Cell<br>D. Marmé, F. Marrè and R. Hertel editors, 1982        |

## © 1982 Elsevier Biomedical Press B.V.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN for this volume: 0-444-80457-9 ISBN for the series: 0-444-80081-6

Published by: Elsevier Biomedical Press B.V. P.O. Box 211 1000 AE Amsterdam, The Netherlands

Sole distributors for the USA and Canada: Elsevier Science Publishing Company Inc. 52 Vanderbilt Avenue New York, N.Y. 19017

Library of Congress Cataloging in Publication Data

International Symposium on the Biochemistry and Metabolism of Plant Lipids (5th: 1982: Groningen, Netherlands)
Biochemistry and metabolism of plant lipids.

(Developments in plant biology; v. 8)

Bibliography: p.

Includes indexes.

1. Plant lipids--Congresses. 2. Plant lipids--Metabolism--Congresses. I. Wintermans, J. F. G. M. II. Kuiper, P. J. C. (Pieter Jan Cornelis) III. Title. IV. Series.

QK898.L56156 1982 581.19'247 82-13952

ISBN 0-444-80457-9 (Elsevier Science Pub. Co.)

Bayerische Staatsbibliothek München

Printed in the Netherlands

## **CONTENTS**

| Dedication                                                                                                                                                                                                  | V   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Preface                                                                                                                                                                                                     | vii |
| BIOCHEMISTRY AND METABOLISM OF FATTY ACIDS                                                                                                                                                                  |     |
| Biosynthesis of fatty acids in a leaf cell<br>P.K. Stumpf, T. Shimakata, K. Eastwell, D.J. Murphy,<br>B. Liedvogel, J.B. Ohlrogge and D.N. Kuhn                                                             | 3   |
| Separation of component enzyme activities of fatty acid<br>synthetase from barley chloroplasts<br>J.D. Mikkelsen and P.B. Høj                                                                               | 13  |
| Partial purification and characterization of fatty acid<br>synthetase from barley chloroplasts<br>P.B. Høj and J.D. Mikkelsen                                                                               | 17  |
| Metabolism of oleoyl-CoA in cell fractions of soybean cell<br>suspension cultures<br>M. Kates and G. Ferrante                                                                                               | 21  |
| Fatty acid binding proteins in <i>Avena sativa</i> seedlings<br>F. Spener and I. Tober                                                                                                                      | 25  |
| Stability of palmitoyl-CoA hydrolase from carrot<br>P. Baardseth and E. Slinde                                                                                                                              | 29  |
| Solubilization of components involved in the microsomal oleate desaturase of potato tubers M. Christ, A. Jolliot, P. Rustin and J-C. Kader                                                                  | 35  |
| Effect of calcium on the biosynthesis of linoleic and linolenic acids during the growth of a calcifuge plant (Lupinus luteus L.)                                                                            | 20  |
| B. Citharel, A. Oursel and P. Mazliak  Shuttle of fatty acids between new leaf chlorenlasts and                                                                                                             | 39  |
| Shuttle of fatty acids between pea leaf chloroplasts and<br>microsomes, mediated by a phospholipid transfer protein<br>D. Drapier, J-P. Dubacq, A. Trémolières, C. Vergnolle,<br>M. Julienne and J-C. Kader | 43  |
| A poly-unsaturated octadecanoic acid derivative, a major fatty acid in sporophores of <i>Cantharellus cibarius</i> Fr. L.J. De Kok, P.J.C. Kuiper and A.P. Bruins                                           | 47  |
| The biosynthesis of photosynthetic membrane lipid precursors in higher plants and its integration with photosynthetic carbon assimilation                                                                   |     |
| D.J. Murphy                                                                                                                                                                                                 | 51  |

| biosynthesis of linoieic acid by cell-tree extracts of                                                                                                                                |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| sunflower seeds<br>C.P. Rochester and D.G. Bishop                                                                                                                                     | 57  |
| On the chloroplastic acyl-CoA synthetase J. Sanchez                                                                                                                                   | 61  |
| <pre>Influence of the culture time on the lipid content of the   cells of Taphrina insititiae and its fatty acid composition   M.S. Sancholle and A. Schneider</pre>                  | 65  |
| Biosynthesis of epicuticular lipids as analyzed with the aid of gene mutations in barley P. von Wettstein-Knowles                                                                     | 69  |
| On the nature and further metabolism of the products of the microsomal elongase(s) from leek epidermal cells C. Cassagne and R. Lessire                                               | 79  |
| Retro-inhibition of the stearoyl-CoA synthetase by stearoyl-CoA in <i>Allium porrum</i> epidermal cell microsomes R. Lessire, P. Moreau and C. Cassagne                               | 83  |
| BIOSYNTHESIS AND METABOLISM OF PLANT MEMBRANE LIPIDS                                                                                                                                  |     |
| Biosynthesis and metabolism of phospholipids P. Mazliak, A. Jolliot and C. Bonnerot                                                                                                   | 89  |
| Properties of phospholipid exchange proteins from germinated castor bean endosperms<br>T. Tanaka and M. Yamada                                                                        | 99  |
| Phospholipid transfer proteins from maize seeds and spinach leaves J-C. Kader, D. Douady, M. Julienne, M. Grosbois, F. Guerbette and C. Vergnolle                                     | 107 |
| Studies on chloroplast lipid metabolism: stimulation of phosphati-<br>dylglycerol biosynthesis and analysis of the radioactive lipid<br>S.A. Sparace and J.B. Mudd                    | 111 |
| The arsenolipids of aquatic plants A.A. Benson and P. Nissen                                                                                                                          | 121 |
| The presence of phospholipid transfer proteins in filamentous fungi<br>L. Chavant and J-C. Kader                                                                                      | 125 |
| Synthesis of phospholipids in synchronous phototrophic cultures of <i>Rhodopseudomonas sphaeroides</i> T. Knacker, N.J. Russell and J.L. Harwood                                      | 129 |
| Characterization of root plasma membranes prepared by partition in an aqueous polymer two-phase system T. Lundborg, A.S. Sandelius, S. Widell, C. Larsson, C. Liljenberg and A. Kylin | 133 |

| (   | spholipid metabolism in plant mitochondria III. CDP-choline: diacylglycerol cholinephosphotransferase compared to NADPH: cytochrome $arrho$ reductase                            |     |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Γ.S. Moore, Jr.                                                                                                                                                                  | 137 |
| 1   | novo-biosynthesis of galactolipid molecular species by reconstituted enzyme systems from chloroplasts<br>M. Frentzen, E. Heinz, T. McKeon and P.K. Stumpf                        | 141 |
| r   | dies on the localization of enzymes involved in galactolipid<br>metabolism in chloroplast envelope membranes<br>A-J. Dorne, M.A. Block, J. Joyard and R. Douce                   | 153 |
| ı   | vivo synthesis of lipids in the blue-green alga, <i>Anabaena</i><br>variabilis<br>N. Murata and N. Sato                                                                          | 165 |
| (   | novo synthesis, desaturation and acquisition of monogalactosyl diacylglycerol by chloroplasts from "16:3"- and "18:3"-plants E. Heinz and P.G. Roughan                           | 169 |
| (   | actolipid biosynthesis in <i>Brassica napus</i> and <i>Vicia faba</i> ; a<br>comparison of lipid biosynthesis in 16:3- and 18:3-plants<br>J.P. Williams, M. Khan and K. Mitchell | 183 |
|     | relation between glycerol-3-phosphate uptake and lipid synthesis<br>in spinach chloroplasts<br>A. Sauer and K-P. Heise                                                           | 187 |
|     | -galactosyl-1,2-diacylglycerol galactosyltransferase activity<br>in developing oat leaf plastids<br>B. Gillanders, J.A. Taylor and R.O. Mackender                                | 191 |
|     | e observations on the biosynthesis of galactolipids by<br>intact chloroplasts<br>J.W.M. Heemskerk, G. Bögemann and J.F.G.M. Wintermans                                           | 197 |
| 1   | vitro synthesis of glyceroglycolipids in the blue-green alga,<br><i>Anabaena variabilis</i><br>N. Sato and N. Murata                                                             | 201 |
| - 1 | $vitro$ demonstration of the path for $lpha$ -linolenic acid synthesis by $\mathit{Avena}$ plastids<br>J-I. Ohnishi and M. Yamada                                                | 205 |
|     | erocyst glycolipid biosynthesis during 7-azatryptophan induced heterocyst differentiation in the cyanobacterium Anabaena cylindrica                                              |     |
| I   | M.T. Mohy-Ud-Dhin, W.J. Krepski and T.J. Walton                                                                                                                                  | 209 |
|     | ect of light on lipid metabolism of tissue cultures<br>A.R. Gemmrich                                                                                                             | 213 |
| 1   | C (S-ethyl dipropylthiocarbamate) modifies the composition of membrane lipids in mature bean chloroplasts <i>in vivo</i> L. Eronen and J. Bahl                                   | 217 |

| BIOSYNTHESIS AND METABOLISM OF SEED LIPIDS                                                                                                               |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fat metabolism in seeds: role of organelles<br>H. Beevers                                                                                                | 223 |
| Composition and lipid biosynthesis $in\ vivo$ in oil bodies of olive tree fruit L.M. Daza and J.P. Donaire                                               | 237 |
| Acyl-CoA synthetase, acyltransferase and acyl-CoA thioesterase<br>activities of oil bodies from avocado mesocarp<br>M. Mancha and J.M. Garcia            | 243 |
| Lipid biosynthesis in the developing mustard seed: metabolism of endogenous and exogenous fatty acids K.D. Mukherjee                                     | 247 |
| Characterization of fatty acid synthesis in a cell free system from developing oil seed rape A. Slabas, P. Roberts and J. Ormesher                       | 251 |
| The control of the triacylglycerol composition in the microsomes of developing oil seeds K. Stobart, S. Stymne and G. Glad                               | 257 |
| CATABOLISM OF PLANT LIPIDS                                                                                                                               |     |
| Lipoxygenases, properties and mode of action<br>J.F.G. Vliegenthart, G.A. Veldink, J. Verhagen,<br>S. Slappendel and M. Vernooy-Gerritsen                | 265 |
| Lipoxygenase as effected by free radical metabolism: senescence retardation by the xanthine oxidase inhibitor allopurinol Y.Y. Leshem and G. Barness     | 275 |
| Liposoluble fluorescent compounds as indication of lipid peroxidation during aging of plants M.N. Merzlyak, V.B. Rumyantseva and M.V. Gusev              | 279 |
| Action of boron <i>in vivo</i> on fatty acid content and lipoxygenase activity in cotyledons during germination of the sunflower seeds                   |     |
| A. Belver, L.M. Daza and J.P. Donaire                                                                                                                    | 283 |
| Factors affecting the stability of lipoxygenase activities of pea seeds during their preparation R. Douillard and E. Bergeron                            | 287 |
| Lipoxygenase in higer plants: a non-mitochondrial enzyme J. Dupont, P. Rustin and C. Lance                                                               | 293 |
| Molecular properties of potato tuber lipolytic acyl hydrolase P.J. Walcott, J.R. Kenrick and D.G. Bishop                                                 | 297 |
| Partial purification and properties of a lipolytic acyl hydrolase from <i>Phaseolus multiflorus</i> leaves F. Depery, P. Schürmann and P.A. Siegenthaler | 301 |

301

|                                                                                                                                                                                                                                  | XIII |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Changes in tobacco lipid composition during senescence and effect of ripening accelerators K. Gruiz and P. Biacs                                                                                                                 | 305  |
| Phosphatidylcholine degradation by solvents<br>R.E. Wilkinson                                                                                                                                                                    | 309  |
| FUNCTION OF LIPIDS AS RELATED TO THE STRUCTURE OF PLANT CELL MEMBRANES                                                                                                                                                           |      |
| Lipid organization and barrier functions of membranes<br>J. de Gier, C.J.A. van Echteld, A.T.M. van der Steen,<br>P.C. Noordam, A.J. Verkleij and B. de Kruijff                                                                  | 315  |
| Structural configuration of plant membrane lipids and their role in the organisation of chloroplast thylakoid constituents                                                                                                       |      |
| P.J. Quinn, K. Gounaris, A. Sen and W.P. Williams                                                                                                                                                                                | 327  |
| Physical properties of thylakoid lipids A.A. Foley and J.L. Harwood                                                                                                                                                              | 331  |
| Restoration by phospholipids of the CDP-choline transferase activity of potato microsomes treated by phospholipase C - examination of ultrastructural rearrangements A. Jolliot, J. Olive, E. Bimont, A-M. Justin and P. Mazliak | 335  |
| The role of membrane fluidity in the maintenance of chloroplast function                                                                                                                                                         |      |
| D.G. Bishop, J.R. Kenrick, J.M. Coddington, S.R. Johns and R.I. Willing                                                                                                                                                          | 339  |
| Fluidity dependence of the proton permeability of membranes from root phospholipid mixtures M. Rossignol and C. Grignon                                                                                                          | 345  |
| Transmembrane distribution and function of lipids in spinach thylakoid membranes: rationale of the enzymatic modification method                                                                                                 |      |
| P-A. Siegenthaler                                                                                                                                                                                                                | 351  |
| Lipid topography of thylakoid membranes<br>M.D. Unitt and J.L. Harwood                                                                                                                                                           | 359  |
| Lipid content of chloroplast thylakoids and regulation of photosynthetic electron transport D.J. Chapman, P.A. Millner, R.C. Ford and J. Barber                                                                                  | 363  |
| Role of phosphatidylglycerol containing trans-hexadecenoic acid in oligomeric organization of the light-harvesting                                                                                                               |      |
| chlorophyll protein (LHCP)<br>A. Trémolières, J-P. Dubacq, J-C. Duval, Y. Lemoine and<br>R. Rêmy                                                                                                                                 | 369  |
| Lipoprotein association in chlorophyll containing complexes isolated by non-ionic detergents                                                                                                                                     |      |
| T. Guillot-Salomon, C. Tuquet, N. Farineau, J. Farineau and M. Signol                                                                                                                                                            | 373  |

| Influence of β-carotene antibodies on the photosynthetic electron transport in chloroplasts of higher plants and in thylakoids of the blue green alga <i>Oscillatoria chalybea</i> A. Radunz and K.P. Bader | 377 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Lipid composition and ultrastructure of potato tuber amyloplasts and amylochloroplasts A.S. Sandelius and C. Liljenberg                                                                                     | 385 |
| The importance of monogalactosyldiglyceride for the structure of the prolamellar body E. Selstam, G. Lindblom, I. Brentel and M. Ryberg                                                                     | 389 |
| Galactolipid and lecithin monolayers at the air/water interface M. Tomoaia-Cotişel, E. Chifu, A. Sen and P.J. Quinn                                                                                         | 393 |
| On phospholipid as part of the crude essential oil from                                                                                                                                                     |     |
| orange fruits<br>K. Knobloch, F. Gemeinhardt, E. Ziegler and H. Brandauer                                                                                                                                   | 397 |
| ECOLOGICAL AND PHYSIOLOGICAL FACTORS AS RELATED TO PLANT LIPID METABOLISM                                                                                                                                   |     |
| Adaptation of thylakoid membranes of wheat seedlings to low temperature L. Vigh                                                                                                                             | 401 |
| Modification of phospholipase D activity during frost hardening of winter rape plants E. Sikorska and A. Kacperska                                                                                          | 415 |
| Effect of sodium chloride on the biosynthesis of unsaturated fatty acids of sunflower plants ( <i>Helianthus annuus</i> L.) M. Ellouze, M. Gharsalli and A. Cherif                                          | 419 |
| Biochemical and ultrastructural changes in plastids from various alfalfa cultivars growing under salt-stress F. Harzallah-Skhiri, T. Guillot-Salomon and M. Signol                                          | 423 |
| The physical state of lipids of the leaves of cucumber geno-<br>types as affected by temperature<br>I. Horváth, L. Vigh, J. Woltjes, P.R. van Hasselt and<br>P.J.C. Kuiper                                  | 427 |
| Drought induced frost resistance in wheat correlates with changes in phospholipids H. Huitema, J. Woltjes, L. Vigh and P. van Hasselt                                                                       | 433 |
| The effect of temperature on phospholipid biosynthesis in rye roots A.J. Kinney, D.T. Clarkson and B.C. Loughman                                                                                            | 437 |
| Effect of water stress on lipid composition of oat seedling root cell membranes C. Liljenberg and M. Kates                                                                                                  | 441 |
| Temperature effect on phospholipids and fatty acid content of germinating seeds E. Palacios-Alaiz, J. Velez and M.T. Alsasua                                                                                | 445 |

| Effects of water stress on lipid and fatty acid composition                                                                                                                                                 |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| of cotton leaves<br>A.T. Pham Thi, C. Flood and J. Vieira da Silva                                                                                                                                          | 451 |
| The effect of salinity on phospholipid content and composition of two <i>Plantago</i> species, differing in salt tolerance C.E.E. Stuiver, L.J.de Kok, A.E. Hendriks and P.J.C. Kuiper                      | 455 |
| Changes in the cuticular transpiration rate and in the composition of the epicuticular wax of oat seedlings induced by water stress M. Svenningsson and C. Liljenberg                                       | 459 |
| Effects of temperature and cytokinin on the metabolism of fatty acids in cell suspensions of <i>Nicotiana tabacum</i> M. Gawer, A-M. Justin, A. Sansonetti and P. Mazliak                                   | 463 |
| Correlation between oleic acid content and cell elongation in<br>Vigna radiata and Vigna sinensis<br>J-P. Dubacq, R. Goldberg, G. de March, R. Prat,<br>A. Trémolières and A. Lecharny                      | 467 |
| Abscisic acid induced changes in physical state and lipid composition of plant membranes T. Farkas, G. Nemecz and B. Singh                                                                                  | 471 |
| Effects of phytochrome on the incorporation of different radiolabelled precursors into phospholipids of etiolated bean hypocotyls E. Hartmann and I. Grasmück                                               | 475 |
| Evidence for the interaction of membrane lipids and the plant photoreceptor, pytochrome B.R. Jordan                                                                                                         | 479 |
| <pre>Light regulation of lipid metabolism and a peroxisomal activity in sunflower and Pharbitis nil cotyledons F. Tchang, A. Oursel, A. Lecharny, A. Connan, D. Robert, A. Trēmolières and P. Mazliak</pre> | 483 |
| BIOSYNTHESIS AND METABOLISM OF ISOPRENOID COMPOUNDS                                                                                                                                                         |     |
| Cytoplasmic and plastidic isoprenoid compounds of oat seedlings and their distinct labelling from <sup>14</sup> -C-mevalonate H.K. Lichtenhaler, T.J. Bach and A.R. Wellburn                                | 489 |
| The biosynthesis of isoprenoid compounds in the chloroplast from the compartmental view G. Schultz, J. Soll and E. Fiedler                                                                                  | 501 |
| Polyprenoid biosynthesis in chloroplasts and chromoplasts<br>K. Kreuz and H. Kleinig                                                                                                                        | 507 |
| Function of plastids in terpene biosynthesis<br>M. Gleizes, C. Bernard-Dagan, J.P. Carde, G. Pauly<br>and A. Marpeau                                                                                        | 511 |

| <pre>Inhibition of mevalonate biosynthesis and of plant growth   by the fungal metabolite mevinolin   T.J. Bach and H.K. Lichtenthaler</pre>                                                 | 515 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Cell structure and volatile terpene compounds: is there a relationship? J-P. Carde, G. Pauly and C. Chéniclet                                                                                | 523 |
| Biosynthesis of biologically important meroterpenoid quinones and chromanols D.R. Threlfall                                                                                                  | 527 |
| Formation of the aromatic moieties of prenylquinones in the stroma of spinach chloroplasts E. Fiedler and G. Schultz                                                                         | 537 |
| Taxonomic and phylogenetic implications of lipid and quinone compositions in phototrophic microorganisms J.F. Imhoff                                                                         | 541 |
| Distribution and levels of ubiquinone homologues in higher                                                                                                                                   |     |
| plants<br>S. Schindler and H.K. Lichtenthaler                                                                                                                                                | 545 |
| Herbicide action on carotenogenesis in a photosynthetic                                                                                                                                      |     |
| cell-free system<br>I.E. Clarke, P.M. Bramley, G. Sandmann and P. Böger                                                                                                                      | 549 |
| Intracellular and intraplastidic distribution of the carotenoids phytoene and lycopene in herbicide - treated seedlings of radish ( <i>Raphanus sativus</i> L.) K.H. Grumbach and G. Britton | 555 |
| Biosynthesis and degradation of chlorophylls in relation<br>to the developmental stages of a plastid<br>K.H. Grumbach, P. Mungenast and J. Ritz                                              | 559 |
| Localization of β-carotene in chlorophyll a-proteins and changes in its levels during short-term high light exposure of plants U. Prenzel and H.K. Lichtenthaler                             | 565 |
| Effect of saponins and sterols on the membrane composition of <i>Trichoderma viride</i> P. Biacs and K. Gruiz                                                                                | 573 |
| Evolution and metabolism of amyrins and sterols during the growth of lettuce seedlings ( <i>Lactuca sativa</i> ) P. Doireau, P. Duperon, A. Verger and R. Duperon                            | 577 |
| Metabolism of cortisol in etiolated mung bean seedlings J.M.C. Geuns                                                                                                                         | 581 |
| Building units of prolamellar bodies: an open question J. Kesselmeier and U. Laudenbach                                                                                                      | 585 |
| Author index                                                                                                                                                                                 | 591 |
| Subject index                                                                                                                                                                                | 595 |
| Index of plant names                                                                                                                                                                         | 605 |

THE BIOSYNTHESIS OF ISOPRENOID COMPOUNDS IN THE CHLOROPLAST FROM THE COM-PARTMENTAL VIEW

G SCHULTZ, J. SOLL AND E. FIEDLER
Botanisches Institut, Tierärztliche Hochschule Hannover, FRG

#### INTRODUCTION

Since the isotopic studies of Goodwin's group (1) it has been proved that chloroplasts are autonomic in the synthesis of the isoprenoid moiety in chlorophylls, prenylquinones and carotenoids. In contrast to the endoplasmic reticulum with farnesyl-PP, in chloroplasts GGPP is the central prenyl-PP, which is elongated (solanesol) hydrogenated (phytol) or bound in tail-to-tail-condensation (carotenoids) (Fig. 1).

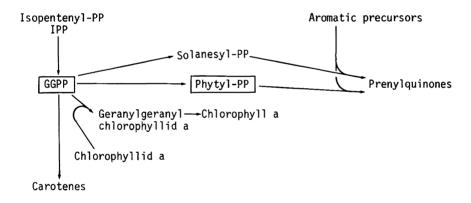



Fig. 1. Pattern on biosyntheses of isoprenoidic compounds in chloroplasts.

The survey presented here deals with the intra-organelle localization of the biosyntheses of isoprenoidic compounds and their primary processes, especially the shikimate pathway in the synthesis of prenylquinones. The studies were done by using purified spinach chloroplasts and their subfractions.

Abbreviations: E4P erythrose-4-phosphate; GGPP geranylgeranyl-PP; HPP 4-hydroxyphenylpyruvate; KDAHP 2-keto-3-deoxy-arabinoheptulonate-7-P; PEP phosphoenolpyruvate; Phe phenylalanine; PQ-9 plastoquinone-9;  $\alpha T$   $\alpha$ -toco-pherol; Tryp trypthophan; Tyr tyrosine.

THE SHIKIMATE PATHWAY AND ITS INVOLVEMENT IN PRENYLQUINONE SYNTHESIS

If intact spinach chloroplasts were illuminated, label from  $^{14}\text{CO}_2$  is incorporated into aromatic amino acids and the prenylquinones  $\alpha T$  and PQ-9 (2, 3). The syntheses were enhanced by external PEP (4) (for the effect on the synthesis of aromatic amino acids see Fig. 2 (5)). Whether PEP is synthesized in the chloroplasts, too, and to what extent is under investigation. It is obvious, that PEP predominately originates from the cytosol and is transferred across the envelope membrane by the phosphate translocator (6, 7). In the chloroplast stroma, KDAHP of the shikimate pathway is formed from E4P of the Calvin-cycle and PEP mentioned above. Just recently, enzymes of this pathway housed in the chloroplast stroma have been characterized (see Fiedler et al., Proc. of this Symposium). The synthesis of aromatic amino acids is centrally regulated by a feedback of Tryp on a step between shikimate and chorismate, whereas Phe and Tyr controls only their own synthesis (8, 4).

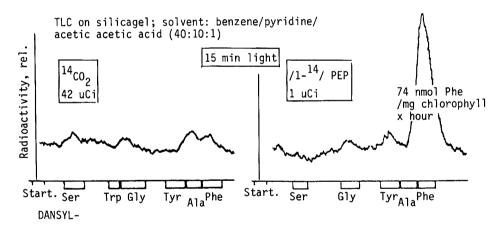



Fig. 2.  $^{14}$ C-Incorporation from  $^{14}$ CO $_2$  and /1- $^{14}$ C/ PEP into amino acids by intact spinach chloroplasts (5). For 2details in experimental conditions see (4).

The involvement of shikimate pathway in prenylquinone formation was first demonstrated by Threlfall's group (9). Homogentisate is the aromatic intermediate in the synthesis of  $\alpha T$  and PQ-9 (10). It is formed from 4-hydroxyphenyl-pyruvate by a dioxygenase which mainly occurs in the chloroplast stroma (11).

The sequence of the steps in the biosynthesis of  $\alpha T$  and PQ-9 was elucidated by Soll et al. (12) (see Fig. 4 and (13)). The site of  $\alpha T$  synthesis is exclusively the envelope membrane, that of PQ-9 the thylakoid membrane, too (12).

Additionally, the phylloquinone (vitamin  $K_1$ ) synthesis occurs in chloroplasts. 1,4-Dihydroxy-2-naphthoate is formed from chorismate via o-succinyl-

benzoate —— CoA-ester of o-succinylbenzoate (14, 15). The naphthoate synthesis, studied in bacteria by Bentley's group (16), was verified in higher plants, too (17, 18). Schultz et al. (19) could demonstrate that 1,4-dihydroxy-2-naphthoate is prenylated by phytyl-PP to form 2-phytyl-1,4-naphthoquinol. The only site of the reaction is the envelope membrane. In the final step of the phylloquinone synthesis, the naphthoquinol is methylated by SAM at the thylakoid membrane (20). Addition of stromal phase is essential.

In Fig. 3 the situation of shikimate pathway in chloroplast is summarized.

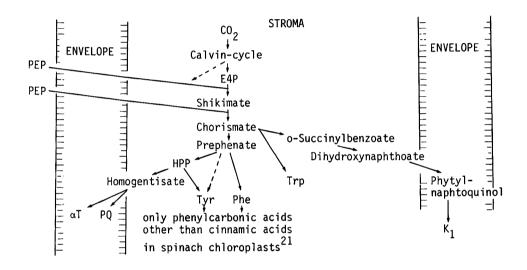



Fig. 3. Metabolic ways related to shikimate pathway in spinach chloroplasts

## PLASTIDIC ISOPRENOID SYNTHESES: THE PHYTOL SYNTHESIS

Concerning the isoprenoid synthesis in plastids, there are some conflicting data. Although spinach chloroplasts are autonomic in isoprenoid synthesis (compare (1)) and incorporate  $^{14}\text{C}$  from  $^{14}\text{CO}_2$  into carotene (22), in chromoplasts of Narcissus pseudonarcissus GGPP, phytoene and carotene are formed only from IPP (23) but not from acetate (24).

The prenyltransferase reaction to yield the polyprenyl-PP s occurs in the stromal phase. It is enhanced by addition of envelope or thylakoid membranes (25) (for solanesyl-PP only envelope and stroma (26)). From the present knowledge on carotenoid synthesis, the multienzyme system forming phytoene from IPP via GGPP (27) differs from the prenyltransferase mentioned above. The

desaturation and the cyclization in carotenoid synthesis are performed by other enzyme systems (27) (for the carotenoid biosynthesis in the blue-green algae Aphanocapsa see (28)).

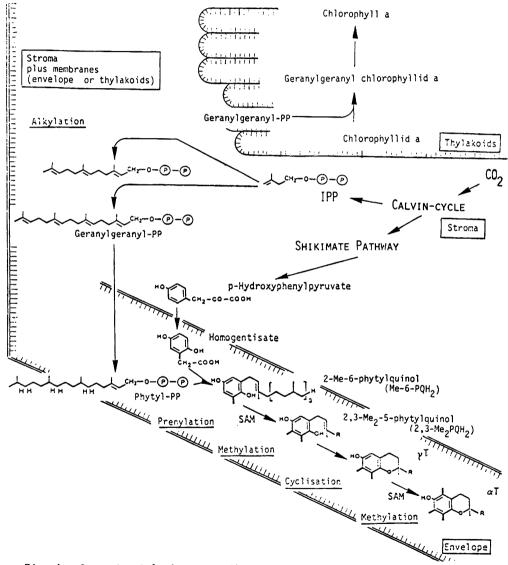



Fig. 4. Compartmental view on syntheses of isoprenoid compounds in chloroplasts

In chlorophylls, tocopherols and phylloquinone, the isoprenoid moiety is phytol. There are two pathways for its synthesis, first the direct hydrogenation of GGPP to form phytyl-PP in the envelope membrane as revealed by Soll et al. (29), second the esterification of chlorophyllid a by GGPP in the thylakoid membranes and subsequent hydrogenation of GG-chlorophyllid a to yield chlorophyll a as shown by Rüdiger's group (30, 31). The hydrogenation is a 3-step-reaction (31): NADPH seems to be involved (29).

In Fig. 4 a survey on intra organelle localization of systems in isoprenoid compounds is given (for further references see (32)).

#### ACKNOWLEDGEMENTS

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

### REFERENCES

- 1. Goodwin, T.W. (1958) Biochem. J. 68, 26 P and 70, 612.
- Schultz, G. and Bickel, H. (1977) in: Proceedings of the 5th Hungarian Bioflavonoid Symposium, Matrafüred/Hungary, Farkas, L. et al. eds., Elsevier, Amsterdam, pp. 271 - 284.
- 3. Bickel, H., Palme, L. and Schultz, G. (1978) Phytochemistry 17, 119 124.
- 4. Buchholz, B. and Schultz, G. (1980) Z. Pflanzenphysiol. 100, 209 215.
- 5. Scharf, H. and Schultz, G., unpublished.
- 6. for review see: Heldt, H.W. (1976) in: The Intact Chloroplast, Barber, J. ed., Elsevier-North Holland, Amsterdam, pp. 215 234.
- 7. Kleinig, H. and Liedvogel, B. (1980) Planta 150, 166 169.
- 8. Bickel, H. and Schultz, G. (1979) Phytochemistry 18, 498 499.
- 9. for review see: Threlfall, D.R. and Whistance, G.R. (1971) in: Aspects of Terpenoid Chemistry and Biochemistry, Goodwin, T.W. ed., Academic Press, London, pp. 335 404.
- 10. Whistance, G.R. and Threlfall, D.R. (1970) Biochem. J. 117, 593 600.
- 11. Fiedler, E., Soll, J. and Schultz, G. (1982) submitted.
- Soll, J., Kemmerling, M. and Schultz, G. (1980) Arch. Biochem. Biophys. 204, 544 - 550.
- Soll, J. and Schultz, G. (1980) in: Biogenesis and Function of Plant Lipids, Mazliak, P., Benveniste, P., Costes, C. and Douce, R. eds., Elsevier-North Holland, Amsterdam, pp. 341 - 344.
- 14. Meganathan, R., Bentley, R. and Taber, H. (1981) J. Bacteriol. 145, 328-332.
- 15. Heide, L. and Leistner, E. (1981) FEBS Letters 128, 201 204.
- 16. Bryant, R.W. and Bentley, R. (1976) Biochemistry 15, 4792 4796.
- 17. Thomas, G. and Threlfall, D.R. (1974) Phytochemistry 13, 807 813.
- 18. Hutson, K.G. and Threlfall, D.R. (1980) Phytochemistry 19, 535 537.

- Schultz, G., Ellerbrock, B.H. and Soll, J. (1981) Eur. J. Biochem. 117, 329 - 332.
- 20. Kaiping, S. and Schultz, G., in preparation.
- 21. Schultz, G. and Bitsch, A., unpublished.
- 22. Bickel, H. and Schultz, G. (1976) Phytochemistry 15, 1253 1255.
- 23. Beyer, P., Kreuz, K. and Kleinig, H. (1980) Planta 150, 435 438.
- 24. Kleinig, H. and Liedvogel, B. (1981) 3. Arbeitstagung "Pflanzliche Lipide" Ulm, 2. 3. 10. 1981, Abstract.
- Block, M.A., Joyard, J. and Douce, R. (1980) Biochim. Biophys. Acta 631, 210 - 219.
- Block, M.A., Joyard, J. and Douce, R. (1981) 6th International Symposium on Carotenoids, Liverpool, 26. - 31. 7. 1981, Abstract.
- 27. Porter, J.W., Spurgeon, S.L. and Pan, D. (1980) in: Biogenesis and Function of Plant Lipids, 1.c., pp. 321 330.
- 28. Clarke, J.E., Sandmann, G., Bramley, P.M. and Böger, P., FEBS Letters 140, 203
- 29. Soll, J. and Schultz, G. (1981) Biochem. Biophys. Res. Commun. 99, 907 912.
- 30. Rüdiger, W., Benz, J. and Guthoff, C. (1980) Eur. J. Biochem. 109, 193-200.
- 31. Benz, J., Wolf, C. and Rüdiger, W. (1980) Plant Sci. Letters 19, 225 230.
- Schultz, G., Bickel, H., Buchholz, B. and Soll, J. (1981) in: Photosynthesis, Vol. V. Chloroplast Development, Akoyunoglou, G. ed., Balaban International Science Services, Philadelphia, pp. 311 318.