926 research outputs found

    On the Quasi-stationary curving dynamics of a railroad truck

    Get PDF
    We examine three aspects of the dynamics of the Cooper-rider truck travelling in a curve with constant radius. First the critical speed is found. Second we investigate the existence of multiple steady solutions to the curving problem. Third- and it is related to the second problem- we shall examine the position of the truck frame and the wheelsets during curving. One inter-esting result is that for a given superelevation there exist curve radii for which the critical speed is exceeded, when the vehicle negotiates the curve with the allowed maximum cant deficiency. These critical speeds are lower than the critical speed on straight track

    Computational detection of allergenic proteins attains a new level of accuracy with in silico variable-length peptide extraction and machine learning

    Get PDF
    The placing of novel or new-in-the-context proteins on the market, appearing in genetically modified foods, certain bio-pharmaceuticals and some household products leads to human exposure to proteins that may elicit allergic responses. Accurate methods to detect allergens are therefore necessary to ensure consumer/patient safety. We demonstrate that it is possible to reach a new level of accuracy in computational detection of allergenic proteins by presenting a novel detector, Detection based on Filtered Length-adjusted Allergen Peptides (DFLAP). The DFLAP algorithm extracts variable length allergen sequence fragments and employs modern machine learning techniques in the form of a support vector machine. In particular, this new detector shows hitherto unmatched specificity when challenged to the Swiss-Prot repository without appreciable loss of sensitivity. DFLAP is also the first reported detector that successfully discriminates between allergens and non-allergens occurring in protein families known to hold both categories. Allergenicity assessment for specific protein sequences of interest using DFLAP is possible via [email protected]

    Who knows best? A Q methodology study to explore perspectives of professional stakeholders and community participants on health in low-income communities

    Get PDF
    Abstract Background Health inequalities in the UK have proved to be stubborn, and health gaps between best and worst-off are widening. While there is growing understanding of how the main causes of poor health are perceived among different stakeholders, similar insight is lacking regarding what solutions should be prioritised. Furthermore, we do not know the relationship between perceived causes and solutions to health inequalities, whether there is agreement between professional stakeholders and people living in low-income communities or agreement within these groups. Methods Q methodology was used to identify and describe the shared perspectives (‘subjectivities’) that exist on i) why health is worse in low-income communities (‘Causes’) and ii) the ways that health could be improved in these same communities (‘Solutions’). Purposively selected individuals (n = 53) from low-income communities (n = 25) and professional stakeholder groups (n = 28) ranked ordered sets of statements – 34 ‘Causes’ and 39 ‘Solutions’ – onto quasi-normal shaped grids according to their point of view. Factor analysis was used to identify shared points of view. ‘Causes’ and ‘Solutions’ were analysed independently, before examining correlations between perspectives on causes and perspectives on solutions. Results Analysis produced three factor solutions for both the ‘Causes’ and ‘Solutions’. Broadly summarised these accounts for ‘Causes’ are: i) ‘Unfair Society’, ii) ‘Dependent, workless and lazy’, iii) ‘Intergenerational hardships’ and for ‘Solutions’: i) ‘Empower communities’, ii) ‘Paternalism’, iii) ‘Redistribution’. No professionals defined (i.e. had a significant association with one factor only) the ‘Causes’ factor ‘Dependent, workless and lazy’ and the ‘Solutions’ factor ‘Paternalism’. No community participants defined the ‘Solutions’ factor ‘Redistribution’. The direction of correlations between the two sets of factor solutions – ‘Causes’ and ‘Solutions’ – appear to be intuitive, given the accounts identified. Conclusions Despite the plurality of views there was broad agreement across accounts about issues relating to money. This is important as it points a way forward for tackling health inequalities, highlighting areas for policy and future research to focus on

    Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water

    Get PDF
    Double diffusion encoding (DDE) of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side water and metabolite DDE spectroscopic (DDES) experiments provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies (μFA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular μFA and diffusivities of specific cell types. By contrast, water DDES measurements allow examination of the separate contributions to water μFA and diffusivity from the intra- and extracellular spaces, by using a wide range of b values to gradually eliminate the extracellular contribution. Here, we aimed to estimate tissue and compartment specific human brain microstructure by combining water and metabolites DDES experiments. We performed our DDES measurements in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) in a total of 20 healthy volunteers at 7 Tesla. Metabolite DDES measurements were performed at b = 7199 s/mm2, while water DDES measurements were performed with a range of b values from 918 to 7199 s/mm2. The experimental framework we employed here resulted in a set of insights pertaining to the morphology of the intracellular and extracellular spaces in both gray and white matter. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. The water μFA obtained from the DDES results at high b values in both regions converged with that of the metabolite DDES, suggesting that the signal from the extracellular space is indeed effectively suppressed at the highest b value. The μFA measured in the OGM significantly decreased at lower b values, suggesting a considerably lower anisotropy of the extracellular space in GM compared to WM. In PWM, the water μFA remained high even at the lowest b value, indicating a high degree of organization in the interstitial space in WM. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM

    THERMAL DENATURATION OF MONOMERIC AND TRIMERIC PHYCOCYANINS STUDIED BY STATIC AND SPECTROSCOPY POLARIZED TIME-RESOLVED FLUORESCENCE

    Get PDF
    C-Phycocyanin (PC) and allophycocyanin (APC). as well as the a-subunit of PC. have been isolated from the blue-green alga (cyanobacterium). Spirulina platensis. The effects of partial thermal denaturation of PC and of its state of aggregation have been studied by ps time-resolved, polarized fluorescence spectroscopy. All measurements have been performed under low photon fluxes (< 10’ ’ photonsipulse x cm’) to minimize singlet-singlet annihilation processes. A complex decay is obtained under most conditions, which can be fitted satisfactorily with a bi-exponential (7’ = 70400 ps. T? = 1000-3000 ps) for both the isotropic and the polarized part, but with different intensities and time constants for the two decay curves. The data are interpreted in the frameworkof the model first developed by Teak and Dale (Biochern. J. 116, 161 (1970)], which divides the spectroscopically different chromophores in (predominantly) sensitizing (s) and fluorescing U, ones. If one assumes temperature dependent losses in the energy transfer from the s to the f and between f chromophores. both the biexponential nature of the isotropic fluorescence decay and the polarization data can be rationalized. In the isotropic emission (corresponding to the population of excited states) the short lifetime is related to the s-,f transfer. the longer one to the “free“ decay of the final acceptor(s) (= f). The polarized part is dominated by an extremely short decay time. which is related to s+f transfer, as well as to resonance transfer between the f-chromophores

    Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation to a humic-rich ecological niche

    Get PDF
    Agaricus bisporus is the model fungus for the adaptation, persistence, and growth in the humic-rich leaf-litter environment. Aside from its ecological role, A. bisporus has been an important component of the human diet for over 200 y and worldwide cultivation of the "button mushroom" forms a multibillion dollar industry. We present two A. bisporus genomes, their gene repertoires and transcript profiles on compost andduringmushroomformation.The genomes encode a full repertoire of polysaccharide-degrading enzymes similar to that of wood-decayers. Comparative transcriptomics of mycelium grown on defined medium, casing-soil, and compost revealed genes encoding enzymes involved in xylan, cellulose, pectin, and protein degradation aremore highly expressed in compost. The striking expansion of heme-thiolate peroxidases and β-etherases is distinctive from Agaricomycotina wood-decayers and suggests a broad attack on decaying lignin and related metabolites found in humic acid-rich environment. Similarly, up-regulation of these genes together with a lignolytic manganese peroxidase, multiple copper radical oxidases, and cytochrome P450s is consistent with challenges posed by complex humic-rich substrates. The gene repertoire and expression of hydrolytic enzymes in A. bisporus is substantially different from the taxonomically related ectomycorrhizal symbiont Laccaria bicolor. A common promoter motif was also identified in genes very highly expressed in humic-rich substrates. These observations reveal genetic and enzymatic mechanisms governing adaptation to the humic-rich ecological niche formed during plant degradation, further defining the critical role such fungi contribute to soil structure and carbon sequestration in terrestrial ecosystems. Genome sequence will expedite mushroom breeding for improved agronomic characteristics

    Can three-flavor oscillations solve the solar neutrino problem?

    Get PDF
    The most promising solution to the solar neutrino problem are neutrino oscillations, which usually are analyzed within the reduced 2-flavor scheme, because the solutions found therein reasonably well reproduce the recent data of Super-Kamiokande about the recoil-electron energy spectrum, zenith-angle and seasonal variations, and the event rate data of all the neutrino detectors. In this work, however, a survey of the complete parameter space of 3-flavor oscillations is performed. Basically eight new additional solutions could be identified, where the best one with \Delta m(12)^2=2.7x10^(-10) eV^2, \Delta m(13)^2=1.0x10^(-5) eV^2, \Theta(12)=23, and \Theta(13)=1.3 (denoted SVO) is slightly more probable than any 2-flavor solution. However, including the results of the atmospheric neutrino problem excludes all 3-flavour solutions apart from the SLMA-solution (\Delta m(12)^2=7.9x10^(-6) eV^2, \Delta m(13)^2=2.5x10^(-4) eV^2, \Theta(12)=1.4, and \Theta(13)=20). Besides, the ability of SNO and Borexino to discriminate the various 2- and 3-flavor solutions is investigated. Only with very good statistics in these experiments the correct solution to the solar neutrino problem can be identified unambiguously.Comment: 22 pages, 19 figures, REVTeX, submitted to Phys.Rev.D, article with better resolved figures available under http://www.mpa-garching.mpg.de/~schlattl/public.htm
    • …
    corecore