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ABSTRACT 
We examine three aspects of the dynamics of the Cooper- 

rider truck travelling in a curve witit constant radius. First the 
critical speed is found. Second we investigate the existence of 
niultiple steady solutions to the curving problem. Third - and it 
is related IO ihe second problem - we shall examine rfie position 
of the truck franie and the wheelsets during curving. One inter- 
esting result is  that for a given superelevation there exist curve 
radii for which the critical speed is exceeded, when the vehicle 
negotiates the curve with the allowed maxiinunz cant deficiency. 
These criticul speeds are lower than !he criiical speed on srraight 
track. 

INTRODUCTION 
All railroad vehicles oscillate horizontally perpendicularly 

to the track center line, the so-called 'hunting', when the speed 
of the vehicle exceeds a certain 'critical speed'. The phenomenon 
has for more than a century erroneously been treated as a linear 
stability problem. The dynamics of a travelling railroad vehicle 
is highly nonlinear, primarily -but not only - due to the wheeWrai1 
contact surface,geometry and the nonlinear stress-strain velocity 
relation in that surface. A survey of the contact problem has been 
given by Kaker [l] .  

Many authors have treated the hunting problem. A purely 
kinematic investigation was presented by Klingel [ 2 ] ,  and in the 
20th century several people investigated the dynamic problem. 
The first person, who correctly formulated the problem of finding 

the critical speed as il bifurcation problem in nonlinear dynamics, 
was Huilgol [3]. A survey of linear stability as well as of nonlin- 
ear bifurcation analyses was given by Knothe and Bohm [4]. 

On a straight railroad line the dynamic problem, formulated 
in a reference frame that moves with the vehicle along the track 
center line, has a stationary solution. For sufficiently low speed 
it is unique and asymptotically stable. In the great majority of 
cases this solution loses stability, when the speed grows, in a 
subcritical Hopf bifurcation. In the Hopf bifurcation point at the 
speed V, a new and periodic motion i s  created - it 'branches off' 
the already known stationary solution. When the bifurcation is 
'subcritical', the new periodic solution exists for speeds lower 
than VH, and it is unstable. The unstable periodic solution gains 
asymptotic stability at a lower speed in a saddle-node bifurca- 
tion, which defines the critical speed V, of the vehicle, because 
it  is the speed at which the stationary solution loses its unique- 
ness. In the saddle-node bifurcation point the periodic solution 
turns over towards higher speeds. In the speed interval (V, , V H )  
three solutions to our nonlinear dynamical problem exist. Two of 
them - one stationary and one periodic solution - are asymptoti- 
cally stable. The initial conditions or the disturbances determine, 
which o f  the stable solutions will emerge, therefore the stationary 
solution is sensitive to finite disturbances above the critical speed 
V,. It means that the stationary motion will jump to the periodic 
motion, if a disturbance pushes the trajectory of the motion into 
the domain of attraction of the periodic motion. The dynamics 
i s  usually depicted in a bifurcation diagram, which plots the am- 
plitude of the various solutions versus the control parameter - in 
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1 
Figure 1. THE COOPERRIDER TRUCK. THE SPRING SIGNATURES 
INDICATE PURE SPRINGS IF THEY ONLY ARE DENOTED BY A 
SPRING CONSTANT ki, AND A SPRING-DAMPER COMBINATION IF 
THEY IN ADDITION ARE DENOTED BY A DAMPING CONSTANT Di. 
THE SPRING-DAMPER COMBINATION DENOTED BY & AND Dg 
ACTS AGAINST THE YAW MOTION OF THE TRUCK FRAME 

our problem the speed, V. 
On curved track the bifurcation diagram is similar, but True 

and Birkedal Nielsen [ 5 ]  found that the critical speed may be 
lower than on straight track. Petersen and Hoffmann [6] extended 
their bifurcation analysis to larger curve radii. They found in 
a student project that a jump of the Hopf bifurcation down to 
the saddle-node happens for a fixed superelevation and growing 
curve radius. Then the Hopf bifurcation becomes supercritical. 
In a supercritical Hopf bifurcation the periodic solution only ex- 
ists for larger speeds than VH, and the new periodic solution is 
asymptotically stable. 

T h i s  contribution intends to deepen the understanding o f  
these phenomena and find their dependence on the parameters 
of the railroad line. 

THE VEHICLE MODEL 
We investigate the dynamics of a railroad truck for a passen- 

ger car. All the important nonlinearites that influence the critical 
speed - the suspension elements, the wheeUrail contact geometry 
and the contact forces - are concentrated in the trucks. We have 
chosen the so-called 'Coopemder truck' [7] Fig. 1 and Fig. 2 as 
our model, because it has been used often as a benchmark model. 
We have added a yaw damper and pitch dampers to the truck and 

I 

Figure 2. THE COOPERRIDER TRUCK. kj AND Di DENOTE SPRING 
AND DAMPER CHARACTERISTICS 

use wheelsets with the S -1002 wheel profile running on UIC60 
rails, which are laid with a slope of 1/40 towards the track cen- 
ter line. AH elements of the truck are assumed to be rigid with 
the exception of the springs and dampers that have linear charac- 
teristics. W. Kik's routine RSGEO is used to calculate the ideal 
contact points between the wheels and the rails in dependence on 
the lateral displacement of the wheelset in the track. For the cal- 
culation of the normal forces in the wheel-rail contact zone we 
use Hertz's theory, and the tangential forces are calculated using 
Shen-Hedrick-Elkins' formula [8]. The truck model has four- 
teen degrees of freedom and an equation for each wheelset h a t  
expresses the condition that the speed of rotation of the wheelset 
corresponds to the speed of travel of the truck. Due to the number 
of degrees of freedom and the nonlinearities the dynamic prob- 
lem is investigated numerically. We use the routine SDlRK as the 
solver and MATLAB for post processing. SDIRK is an acronym 
for Singly Diagonally Implicit Runge-Kutta. and it is an efficient 
solver for stiff problems as ours. We use an error tolerance lo-' 
and an output stepsize of Each branch of the solution is 
found by a path following procedure. The existence of the Hopf 
bifurcations is verified by a numerical investigation of the varia- 
tion of the eigenvalues of the Jacobian in a neighborhood of the 
bifurcation points. 

Before we go over to the next section.'Some results', we 
shall refresh some imporrant concepts from nonlinear dynamics. 
For a deeper insight the interested reader i s  referred to the article 
by True [9]. 

Nonlinear dynamic problems often have several steady solu- 
tions, where each of them depends on the initial conditions used. 
This is a contrast to the linear problems that have unique steady 
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solutions. A steady solution is defined as the asymptotic limit of 
the solution for time, t ,  going to infinity - in other words after 
the transient has died out. A steady solution may be stationary, 
periodic or have a more complicated structure like chaos. The 
set of a11 initial conditions, from which the trajectories approach 
a steady solution, is called h e  basin of attraction of that solu- 
tion. Vehicle dynamic problems are parameter dependent. Of all 
the parameters the speed. V, is particularly interesting, because it 
varies during the ride, and V is therefore chosen as the external 
control parameter in our problem. 

The multiplicity of solutions of a nonlinear problem depends 
on the parameters. In order to obtain an overview we most often 
use bifurcation diagrams, where a quantity Characterizing a cer- 
tain solution is plotted versus the parameter. A typical example 
from vehicle dynamics is shown in Fig. 7 .  A broken line denotes 
an unstable solution.The figure shows a subcritical bifurcation of 
a periodic solution from a stationary solution, x=O, at V=V[incr3 
and a saddle-node bifurcation at V=Vnon,ine,j,, where the periodic 
solution turns around and gains asymptotic stability. At a sub- 
critical bifurcation the bifurcating periodic solution coexists with 
the stable stationary solution, and the periodic solution is unsta- 
ble. At a supercritical bifurcation the periodic solution coexists 
with the unstable stationary solution, and it will be stable. Since 
V,,on/incri, is the speed, at which the stationary solution V=O loses 
its uniqueness, the stationary solution becomes sensitive to finite 
disturbances above that speed. The speed V n o , , ~ ~ c r ~  is therefore 
the critical speed of the vehicle. The stationary solution will re- 
main asymptotically stable, until the vehicle reaches the speed 
V{jncr$. Above ~ h c r j ,  the stationary solution is unstable, and the 
only stable solution to the problem - at least in some higher speed 
interval - is the periodic solution, 

Bifurcation points like Vfincri, and Vmon(incr3 depend of course 
on the other parameters in the problem. In curving dynamics we 
have IWO important additional parameters, namely the radius of 
the curve and the superelevadon of the track. A plot of the bi- 
furcation points versus one or more of the parameters is called a 
bifurcation set. An example of a bifurcation set is Fig. 3. It is 
important to keep the difference between a bifurcation diagram 
and a bifurcation set in mind, since they may look alike. The 
bifurcation points in a bifurcation set may merge or turn around 
or cross -just Iike the curves in a bifurcation diagram. The bifur- 
cation set, however, illustrates the dependence of the bifurcation 
points on the parameters. The bifurcation diagram illustrates the 
dependence of a norm of the solutions eg. the amplitude on the 
parameters. 

SOME RESULTS 
On a straight track the first Hopf bifurcation point for the 

Coopenider truck is 117.3 m l s  and the critical speed is 53.97 
ds-194 k m h .  [6]. These values are not unusual for a modern 
truck designed for passenger cars with a maximum service speed 

I 
Figure 3 THE CRITICAL SPEEDS FOUND BY PETERSEN AND 
HOFFMANN [6]. THE SUPERELEVATION IS 2'. NEAR R=1200m A 
SUBCRITICAL HOPF BIFURCATION SUDDENLY CHANGES TO A SU- 
PERCRITICAL HOPF BIFURCATION 

of 160 krn/h. The Ffopf bifurcation - in the following called 'the 
linear critical speed' - and the critical speed - or correspondingly 
'nonlinear critical speed' - in curves with a radius in the interval 
600m<R<2000m were found by Petersen and Hoffmann [6]. In 
Fig. 3 we show their results as a bifurcation set for a track with a 
superelevation of 2". 

We see that the linear critical speed grows ~ but not 
monotonously - from R=600m to R-1200 m. The Hopf bifurca- 
tion i s  very sensitive to the wheel-rail contact geometry, which 
depends on the yaw angle and the lama1 displacements of the 
wheelsets. They in turn depend primarily on the supereleva- 
tion and the radius in the curve. The nonlinear critical speed 
also grows, but much slower and monotonously, up until a radius 
of R-1100 m. At R-llOOm the bifurcation points are located 
close to their corresponding values on straight track, but then 
the nonlinear critical speed decreases for growing R, Around 
R=1200m the linear critical speed jumps down to the nonlin- 
ear critical speed, whereby the two bifurcation points merge and 
create a single supercritical Hopf bifurcation. The critical speed 
then drops to around 38 m / s  at R=1400m, but from R=1500m the 
linear critical speed and the nonlinear critical speed separate and 
merge again at R-ISOOm, where a minimum exists: When R 
grows beyond 1800m, the situation seems to approach the situa- 
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Figure 4. THE BRANCHES OF THE LINEAR (HOPF BIFURCAT1ONS) 
AND NONLINEAR CRITICAL SPEEDS 

Figure 5 .  AN ENLARGEMENT OF A SECTION OF FIG.4 

tion on straight track, but further analysis is necessary to confirm 
that postulate. , 

The nonlinear critical speeds in the diagram are quite large, 
and it is therefore interesting to test the relevance for a real sit- 
uation. UIC has set standards for the maximum dlowed 'un- 
compensated lateral acceleration' on railroad lines. From these 
it is easy to calculate the maximum speed in a curve with a given 
radius and superelevation. In 'our example most of the critical 
speeds will lie above the maximum speed allowed on the basis 

Unstable 

'nonlimit - - _  I --• 

Stablej 

' A  ' jB !C 
c 

Rrnr R 

Figure 6. A PLOT SHOWING THE ASYMPTOTICALLY STABLE RE- 

CURVE RADIUS R AROUND R=1230m. 
GIONS OF THE STATIONARY SOLUTION IN DEPENDENCE ON THE 

of the UIC standard, but it will not be the case for R=1800m. If 
the vehicle travels through that curve with the allowed uncom- 
pensated lateral acceleration of 0.67 d s ' ,  then it will start to 
hunt. The critical speed in that curve is only 33 ds-119 km/h, 
whereas the critical speed on straight track was 194 km/h. 

We want to investigate the merger of the nonlinear and lin- 
ear critical speeds around R=1200m. The numerical calculations 
revealed the bifurcation sets shown in Fig. 4 and Fig. S. It is seen 
in Fig. 5 that a merger of two Hopf bifurcation points appears at 
a s p e e d 4 5  m/s for R=1226.6m, whereby the lowest linear crit- 
ical speed jumps down from 90 d s .  The values are not exactly 
the same as those in Fig. 3, because the wheel profile has been 
slightly modified in the model we consider in this work. and there 
are no pitch dampers in Petersen and Hoffmann's model. The 
lower branch from the merger, vlincru2, wiggles violently around 
R=1230m, until it merges with vnonl,ncrir around R=1232.4m and 
the speed V d 6 . 2  d s .  The diagram in Fig. 6 shows qualitatively 
the regions of asymptotical stability of the stationary solution in 
dependence on the curve radius R. 

In order to depict the merger qualitatively we consider the 
bifurcation diagrams in  the three sections denoted 'A', 'B' and 
'C' in Fig. 6.  In this way the character of the merger will become 
clear. In Fig. 7 the section 'A' is shown. The bifurcation diagram 
is that of a normal subcritical Hopf bifurcation, where the unsta- 
ble, periodic solution gains stability in a saddle-node bifurcation. 
In Fig. 8 (section B) we see that two new Hopf bifurcation points 
vlinfri12 and vfincr23 have appeared in the diagram. They lie be- 
low the old vlincrd, which from now on will be denoted vlhcrirl. 

Between vlincru2 and vlincrir3 the stationary solution has become 
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Figure 7. SECTION A FROM FIG.6 SHOWING THE SUBCRITICAL 
HOPF AND THE SADDLE-NODE BIFURCATIONS 

Figure 8. SECTION B FROM FIG.6 SHOWING THE SUBCRITICAL 

BLE PERIODIC SOLUTION 
HOPF BIFURCATION TOGETHER WITH THE SMALL AMPLITUDE STA- 

unstable, and a new asymptoticalIy stable periodic solution with 
small amplitude has been created in the interval. For larger R 
the amplitude of the new periodic solution and the values of the 
bifurcation points v1mrra2 and v/jnCrjt3 all grow until v[incr,,l and 
17iacrir3 coalesce and the new penodic solution 'hits' the unstable 
periodic solution that emerges from ~ ' j j ~ ~ ~ ; ~ l .  The details of what 
looks like a kind of 'exchange of stability' at this point is under 

Figure 9. SECTlON C FROM FIG.6 SHOWING THE SUBCRITICAL 
HOPF BIFURCATION TOGETHER WITH THE SMALL AMPLITUDE UN- 
STABLE PERIODIC SOLUTION 

investigation. For still larger values of R the saddle-node bifur- 
cation point disappears, and the large amplitude hunting motion 
has become stable, and its bifurcation point is now a supercritical 
Hopf bifurcation. The small amplitude periodic solution has be- 
come unstable between the bifurcation points v/,ncr;i3 and v/,ncrlfl, 
while the stationary solution now has become asymptotically sta- 
ble in the same speed interval. This situation is shown in Fig. 9 
(section C). For still higher values of R the amplitude of the small 
amplitude periodic solution decreases, while yjnCrjf3 and vjincr21 

approach each other, meet and finally annihilate each other. The 
existence of two periodic, stable solutions is demonstrated in the 
plots in Fig. 10. 

The Hopf bifurcation points depend not only on the radius of 
the curve but also on the superelevation of the track. The critical 
speed for the Hopf bifurcation only changes little, but the Hopf 
bifurcation points tend towards lower radii of curvature, when the 
superelevation increases. The location of the Hopf bifurcation 
points depend on the contact surface geometry, and that in turn 
depends on the position of the wheelsets in the curve. In Table 1 
we show the interval [ q j n c r ~ ~ .  vlinCrjr3] for selected values of the 
superelevation @. 

The onset of hunting in curves with growing speed depends 
on a delicate balance between the gravitational stiffness of the 
displaced wheelsets. the centrifugal and gravitational forces and 
the geometry of the entire wheel and rail profiles. In order to try 
to find some relations we have compared the yaw of the truck 
wheelsets versus the speed with the radial alignment for various 
radii. The superelevation Q, is again 2 O .  The results are shown 
in Fig. I 1  and Fig. 12. It is interesting to notice that there might 
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Figure IO. TWO PERIODIC STABLE SOLUTIONS AT R=1230m, 
V=SOmls AND * 2 O  

Table 1. THE INFLUENCE OF THE SUPE 

[1226.5,1226.6] 

4 O  [1112.5,1115] 

6' l997.5, 10001 

3ELEVATION @ 

be a connection between the start of the periodic motion and the 
speed at which the position of a wheelset becomes radial. For low 
speeds both the leading and the trailing wheelsets have a larger 
yaw angle than the radial, meaning that they tend to steer the 
wheelsets out of the curve away from the center. The tendency is 
most pronounced for the trailing wheelset. In spite of the larger 
initial yaw angle the trailing axle will align radially first and then 
tend to steer the axle towards the center of the curve, when the 
speed increases. The leading axle follows suit. When the ra- 
dius is larger than 1235m hunting starts before any of the axles 
reaches a radial position. 

. .  
40 50 60 i o  

xlo-a B12275m 

0 

-0.5 

-1 

-1.5 40 50 60 m 
v WI 

Figure I t .  THE YAW ANGLES OF THE LEADING AND TRAILlNG 
AXLES VERSUS THE SPEED. @do 

Conclusion 
In 1983 Neil Cooperrider visited The Technical University 

of Denmark and had the opportunity to ride in the cab on one 
of the Danish 'Lyntog' - a fast (140 km/h) diesel trainset, which 
basically was the same as the famous German TEE VT 11 trains. 
After the ride he reported to one of the authors (HT) that he had 
noticed a hunting morion in a couple of curves, through which the 
train had travelled with its maximum speed. On the rest of the 
line the train was running very calmly. I t  was noteworthy that the 
track condition was excellent all the way, and the hunting took 
place in curves with large radii - larger than IOOOm. Neil Coop- 
errider expected that to happen, but he had never experienced i t  
before, and he offered no explanation. 

True and Birkedal Nielsen [5] found that the critical speed 
in curves is lower than on straight track, but their results were 
limited to curve radii smaller than 600m. In these curves the crit- 
ical speeds were higher than the maximum speed allowed by the 
UIC limits on the maximum uncompensated lateral acceleration 
in curves. 

Petersen and Hoffmann 161 calculated the critical speeds in 
curves with radii larger than 600m. They found that in curves 
with large radii the critical speed may be lower than the max- 
imum allowed speed and also lower than the criticd speed on 
straight track, so the vehicle may hunt in the curves only. That 
explains Neil Coopenider's observation. 
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Figure 12. SCHEMATIC PLOTOFTHE POSITION OFTHE WHEELSETS AND THETRUCK FRAME RELATIVETOTHE RADIAL LINE AT DIFFERENT 
SPEEDS. THE SPEED INCREASES FROM POSITION 1 TO POSITION 4 
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This result has implications for the design parameters of rail- 
way vehicles, since it means that the reduction of the critical 
speed in curves must be taken into consideration in the design 
of the vehicle. 

Petersen and Hoffmann [ 6 ]  also found the jump of the linear 
critical speed - the Hopf bifurcation - down to the nonlinear crit- 
ical speed that takes place at a certain combination of the radius 
of the curve and the superelevation in the curve. In the present 
contribution we investigated the dynamics of the curving Coop- 
errider truck in an interval around the radius, where the jump 
occurs, and hoped to relate the jump to a sudden change in the 
position of the truck on the track. The jump is connected with an 
interesting development of a new small amplitude periodic mo- 
tion for speeds smaller than the original Hopf bifurcation. The 
creation of the new periodic motion seems to be connected with 
the speeds at which first the trailing and then the leading wheelset 
in the truck crosses the radial line. At larger curve radii the new 
periodic motion ’moves up’ towards the original Hopf bifurca- 
tion. At a certain radius the two periodic motions - the unstable 
large amplitude motion and the stable small amplitude motion - 
meet in what supposedly is - a kind of transcritical bifurcation. 
The bifurcation takes place in the bifurcation set with respect to 
changes of the radius. For still larger radii the former subcritical 
Hopf bifurcation turns supercritical, and the periodic branch be- 
comes asymptotically stable. ‘The small amplitude periodic mo- 
tion now exists supercritically and is unstable. In tum the station- 
ary solution has gained asymptotic stability in the speed interval 
where it coexists with both the periodic solutions. 

We found no discontinuities in the position of the wheelsets 
as a function of the speed and the radius of the curve. Therefore 
the jump from the subcritical to the supercritical Hopf bifurca- 
tion is related to the smooth process of a kind of transcritical 
bifurcation in the bifurcation set. 

We intend to continue our studies in this area. The details 
of what looks like a kind of transcritical bifurcation is of theo- 
retical interest. It concerns the neighborhood of the radius where 
the two different periodic solutions meet. We would also like to 
extend our results, which were limited to radii beween 600m and 
2000m, to smaller radii and to radii tending towards infinity. It 
is necessary in order to establish the connection between our re- 
sults and the results found by True and Birkedal Nielsen [ 5 ]  for 
the smaller radii and verify the postulate on page 4. We intend to 
extend our investigation to the case of maximum superelevation. 
Since the guiding forces are large in the curves, it is important to 
calculate the wheel-rail contact forces in the curves for as well 
the stationary as for the periodic motions. The results must be 
related to the position of the Uuck in the curves. The wheel/rail 

. - contact forces are, however, influenced by the dynamics of the 
track, so the ’rigid crack assumption’ in this work must then be 
dropped. The contact force problem will be investigated in a re- 
cent cooperation between the authors and the Polish Academy of 
Sciences. 

The influence of the wheelbase and the stiffness of the pri- 
mary suspension on the dynamics needs to be investigated. High- 
speed trains have trucks with larger wheelbases than the 2. im  of 
the Cooperrider truck, and the results of this work apply mainly 
to trains running fast through curves with large radii. The wheel- 
base and the stiffness of the primary suspension are supposedly 
the two most important parameters in th is case, but it is of course 
desirable to examine the quasi-stationary curving dynamics of a 
wider range OF existing truck constructions. 
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