144 research outputs found

    Molecular Basis of Inward Rectification: Polyamine Interaction Sites Located by Combined Channel and Ligand Mutagenesis

    Get PDF
    Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter

    A Kir6.2 mutation causing severe functional effects in vitro produces neonatal diabetes without the expected neurological complications

    Get PDF
    AIMS/HYPOTHESIS: Heterozygous activating mutations in the pancreatic ATP-sensitive K+ channel cause permanent neonatal diabetes mellitus (PNDM). This results from a decrease in the ability of ATP to close the channel, which thereby suppresses insulin secretion. PNDM mutations that cause a severe reduction in ATP inhibition may produce additional symptoms such as developmental delay and epilepsy. We identified a heterozygous mutation (L164P) in the pore-forming (Kir6.2) subunit of the channel in three unrelated patients and examined its functional effects. METHODS: The patients (currently aged 2, 8 and 20 years) developed diabetes shortly after birth. The two younger patients attempted transfer to sulfonylurea therapy but were unsuccessful (up to 1.1 mg kg(-1) day(-1)). They remain insulin dependent. None of the patients displayed neurological symptoms. Functional properties of wild-type and mutant channels were examined by electrophysiology in Xenopus oocytes. RESULTS: Heterozygous (het) and homozygous L164P K(ATP) channels showed a marked reduction in channel inhibition by ATP. Consistent with its predicted location within the pore, L164P enhanced the channel open state, which explains the reduction in ATP sensitivity. HetL164P currents exhibited greatly increased whole-cell currents that were unaffected by sulfonylureas. This explains the inability of sulfonylureas to ameliorate the diabetes of affected patients. CONCLUSIONS/INTERPRETATION: Our results provide the first demonstration that mutations such as L164P, which produce a severe reduction in ATP sensitivity, do not inevitably cause developmental delay or neurological problems. However, the neonatal diabetes of these patients is unresponsive to sulfonylurea therapy. Functional analysis of PNDM mutations can predict the sulfonylurea response

    Consensus statements on the information to deliver after a febrile seizure

    Get PDF
    Febrile seizures (FS) are usually self-limiting and cause no morbidity. Nevertheless they represent very traumatic events for families. There is a need to identify key messages that reassure carers and help to prevent inappropriate, anxiety-driven behaviors associated with “fever phobia.” No recommendations have been proposed to date regarding the content of such messages. Using a Delphi process, we have established a consensus regarding the information to be shared with families following a FS. Twenty physicians (child neurologists and pediatricians) from five European countries participated in a three-step Delphi process between May 2018 and October 2019. In the first step, each expert was asked to give 10 to 15 free statements about FS. In the second and third steps, statements were scored and selected according to the expert ranking of importance. A list of key messages for families has emerged from this process, which offer reassurance about FS based on epidemiology, underlying mechanisms, and the emergency management of FS should they recur. Interestingly, there was a high level of agreement between child neurologists and general pediatricians. Conclusion: We propose key messages to be communicated with families in the post-FS clinic setting.What is Known:• Febrile seizures (FS) are traumatic events for families.• No guidelines exist on what information to share with parents following a FS.What is New:• A Delphi process involving child neurologists and pediatricians provides consensual statement about information to deliver after a febrile seizure.• We propose key messages to be communicated with families in the post-FS clinic setting

    KirBac1.1: It's an Inward Rectifying Potassium Channel

    Get PDF
    KirBac1.1 is a prokaryotic homologue of eukaryotic inward rectifier potassium (Kir) channels. The crystal structure of KirBac1.1 and related KirBac3.1 have now been used extensively to generate in silico models of eukaryotic Kir channels, but functional analysis has been limited to 86Rb+ flux experiments and bacteria or yeast complementation screens, and no voltage clamp analysis has been available. We have expressed pure full-length His-tagged KirBac1.1 protein in Escherichia coli and obtained voltage clamp recordings of recombinant channel activity in excised membrane patches from giant liposomes. Macroscopic currents of wild-type KirBac1.1 are K+ selective and spermine insensitive, but blocked by Ba2+, similar to “weakly rectifying” eukaryotic Kir1.1 and Kir6.2 channels. The introduction of a negative charge at a pore-lining residue, I138D, generates high spermine sensitivity, similar to that resulting from the introduction of a negative charge at the equivalent position in Kir1.1 or Kir6.2. KirBac1.1 currents are also inhibited by PIP2, consistent with 86Rb+ flux experiments, and reversibly inhibited by short-chain di-c8-PIP2. At the single-channel level, KirBac1.1 channels show numerous conductance states with two predominant conductances (15 pS and 32 pS at −100 mV) and marked variability in gating kinetics, similar to the behavior of KcsA in recombinant liposomes. The successful patch clamping of KirBac1.1 confirms that this prokaryotic channel behaves as a bona fide Kir channel and opens the way for combined biochemical, structural, and electrophysiological analysis of a tractable model Kir channel, as has been successfully achieved for the archetypal K+ channel KcsA

    Mise à jour 2014 des recommandations du GEFPICS pour l’évaluation du statut HER2 dans les cancers du sein en France

    Get PDF
    De nouvelles recommandations internationales pour l’évaluation du statut HER2 dans les cancers du sein, basées sur plus de dix ans d’expérience et sur les résultats d’études cliniques et de concordance entre les différentes techniques de détection, viennent tout juste de voir le jour. Le présent article a pour objet de faire le point sur ces nouvelles recommandations, à la lumière de la publication récente du groupe de travail de l’American Society of Clinical Oncology (ASCO) et du Collège des pathologistes américains (CAP), adaptées à la pratique de la pathologie en France et revues par le groupe GEFPICS. À l’ère de la médecine personnalisée, la détermination du statut HER2 reste un élément phare dans le panel des biomarqueurs théranostiques des cancers du sein. Si l’interprétation du statut HER2 dans les cancers du sein est aisée dans la majorité des cas, un certain nombre de situations anatomocliniques est d’interprétation plus délicate, telles que la possibilité rare mais réelle de l’hétérogénéité intra-tumorale du statut de HER2, les formes à différenciation micropapillaire ou la ré-évaluation du statut des biomarqueurs lors de la rechute métastatique. Ces nouvelles recommandations abordent ces différentes questions, reprécisent les conditions pré-analytiques optimales et les critères d’interprétation (notamment des cas 2+), afin de réduire au maximum le risque de faux négatifs. Plus que jamais, la mobilisation de la spécialité d’anatomo-cytopathologie autour de la qualité des tests théranostiques témoigne de son implication dans la chaîne des soins en cancérologie., Summary International guidelines on HER2 determination in breast cancer have just been updated by the American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP), on the basis of more than ten-year practice, results of clinical trials and concordance studies. The GEFPICS group, composed of expert pathologists in breast cancer, herein presents these recommendations, adapted to the French routine practice. These guidelines highlight the possible diagnosis difficulties with regards to HER2 status determination, such as intra-tumor heterogeneity, special histological subtypes and biomarker re-evaluation during metastatic relapse. Pre-analytical issues and updated scoring criteria (especially for equivocal cases) are detailed, in order to decrease the occurrence of false negative cases. In the era of personalized medicine, pathologists are more than ever involved in the quality of oncotheranostic biomarker evaluation.
    corecore