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ABSTRACT 

 

In this paper we present a generic optimization algorithm 

for the allocation of dynamic positioning actuators, such as 

azimuthing thrusters and fixed thrusters. The algorithm is based 

on the well-known Lagrange multipliers method. In the present 

approach the Lagrangian functional represents not only the cost 

function (the total power delivered by all actuators), but also all 

constraints related to thruster saturation and forbidden zones for 

azimuthing thrusters. 

 

In the presented approach the application of the Lagrange 

multipliers method leads to a nonlinear set of equations, 

because an exact expression for the total power is applied and 

the actuator limitations are accounted for in an implicit manner, 

by means of nonlinear constraints. It is solved iteratively with 

the Newton-Raphson method and a step by step implementation 

of the constraints related to the actuator limitations. 

 

In addition, the results from the non-linear solution method 

were compared with the results from a simplified set of linear 

equations, based on an approximate (quadratic) expression for 

the thruster power. The non-linear solution was more accurate, 

while requiring only a slightly higher computational effort. 

 

An example is shown for a thruster configuration with 8 

azimuthing thrusters, typical for a DP semi-submersible. The 

results show that the optimization algorithm is very stable and 

efficient. 

 

Finally, some options for improvements and future 

enhancements – such as including thruster-thruster and thruster-

hull interactions and the effects of current – are discussed. 

INTRODUCTION 
 

With the offshore industry moving to ever deeper waters, 

more and more vessels are equipped with dynamic positioning 

(DP) systems. On a DP vessel a feedback system controls the 

thrusters to keep the vessel in a fixed position, thus eliminating 

the need for mooring lines. The components in a DP system are 

described in more detail below. 

 

Components in a DP system 

The DP system on board a vessel contains several different 

hardware and software components. These components are 

shown in the schematic overview in Figure 1. The main 

components of the DP system are briefly described below. 

More detailed explanations can be found in [1], [2] and [3]. 

 

 Position Measurement: The position of the control point 

(CP) on the vessel is measured using e.g. GPS or an 

acoustic position reference system. 

 Extended Kalman Filter (EKF): The EKF determines the 

low frequency motions and velocities of the vessel. The 

purpose of the filter is to avoid thruster response to wave 

frequency vessel motions. 

 Position Error: The estimated low frequency position and 

velocity are compared to the position and velocity of the 

reference point (RP). The resulting position error is 

forwarded to the Controller. 
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 Controller: Based on the horizontal offset from the RP and 

the velocity of the vessel, the Controller determines the 

required total surge and sway forces and yaw moment. 

 Allocation Algorithm: The Allocation Algorithm distributes 

the required total forces and moment over the available 

actuators such that the allocated power is minimized. The 

allocation algorithm (marked red in Figure 1) is the 

component of the DP system discussed in this paper. 

 Thrusters: The azimuth angles and RPMs are set, based on 

the output of the Allocation Algorithm. The generated total 

forces and moment will move the vessel CP towards the RP 

position. 

 

It is noted that in practical applications the response of the 

thrusters is limited in terms of rate of turn, as well as rate of 

change in RPM. This may cause differences between the total 

thrust requested for by the controller and the total thrust 

generated by the actuators, especially in relatively severe 

environments, close to the limitations of the vessel's 

stationkeeping capabilities. 

 

Furthermore, the effective force delivered by the thrusters 

may be smaller than the nominal (bollard pull) thrust value. 

This difference is caused by thruster-interaction (or thrust 

degradation) effects. The following thruster-interaction effects 

are mentioned: 

 

 Thruster-hull interaction 

 Thruster-thruster interaction 

 Thruster-current interaction 

 

Thruster allocation 

The present paper focuses on the Allocation Algorithm. In 

general, there will be more variables describing the thruster 

settings (azimuth angle, RPM) than equations to solve (required 

forces and moment). The over-determined set of equations is 

solved in such a way to minimize the allocated power. 

However, the resulting optimization problem is relatively 

complex, for the following reasons: 

 

 The relations between RPM, generated thrust and consumed 

power are non-linear. 

 The thrust generated by a thruster is limited (‘saturation’). 

 Certain orientations of an azimuthing thruster may not be 

allowed. These ‘forbidden zones’ may be defined to avoid 

excessive thruster-interaction losses, or to protect sensitive 

equipment placed under the vessel hull (e.g. hydrophones or 

cables). 

OPTIMIZATION OF THRUSTER ALLOCATION 
 

Introduction and definitions 

We consider a vessel with N  azimuthing thrusters (other 

types of actuators will be considered later on). Each azimuthing 

thruster i  is characterized by the following thruster attributes: 

 

 The position ( , )i ix y  with respect to the reference point G . 

 The maximum thrust 
max,iT  

 The maximum power 
max,iP  

 

Each thruster can rotate about its vertical axis. The azimuth 

(angle) of thruster i  is denoted by 
i
, its thrust by 

iT  and its 

state is defined by the allocated surge force and sway force, 

combined in the state vector: 

 

 , ,( , )T

i x i y iF F F  (1) 

 

The contribution to the yaw moment about G  is 

 

 
, , ,z i i y i i x iM x F y F  (2) 

 

The thrust 
iT  and azimuth 

i
 are calculated from 

,x iF  and 
,y iF  

as follows: 

 

 2 2

, ,i i x i y iT F F F  (3a) 

 
, ,arctan( )i y i x iF F  (3b) 

 

Note that some angles may be prohibited: for instance, if one 

thruster is in the stream of another, the efficiency will drop. In 

certain cases, we will thus have to define a "forbidden zone" for 

the azimuth. 

 

The power of thruster i  is given by: 

 

 ( ) ( ) 2 2 /2

, ,or ( )m m m m

i i i i i x i y iP c T P c F F  (4) 

 

The exact formulation for the thruster power (in bollard pull 

conditions) is obtained for 3 2m , but this leads to a system 

of non-linear equations, whereas the choice 2m  gives a set 

of linear equations which is easier to solve. 

 

The coefficient 
ic  is calculated by substitution of the maximum 

values of the thrust and the power for 3 2m : 

 

 max,

3 2

max,

i

i

i

P
c

T
 (5) 
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We can then describe the system of thrusters with the global 

state vector 

 

 ,1 ,1 ,2 ,2 , ,( , , , , , , )T

x y x y x N y NF F F F F F F  (6) 

 

and define the total surge force, the total sway force and the 

total yaw moment by summation over all thrusters: 

 

 
,tot , ,tot , ,tot ,

1 1 1

, ,
N N N

x x i y y i z z i

i i i

F F F F M M  (7) 

 

The total power of the thruster configuration is calculated by 

summation of the power of the individual thrusters: 

 

 ( ) ( )

tot

1

N
m m

i

i

P P  (8) 

 

Optimization of allocation – minimization of power 

Our aim is to optimize the energy consumed by the 

thrusters: we search the state vector F  that minimizes the 

object function ( )

tot

mP  under the following set of constraints: 

 

 The total surge and sway forces and the total yaw moment 

have to match the required values: 

 

 ,req ,tot( ) 0x x xR F F F  (9a) 

 ,req ,tot( ) 0y y yR F F F  (9b) 

 ,req ,tot( ) 0z z zR F M M  (9c) 

 

 The thrust is limited by the maximum thrust: 

 

 2 2 2

max, , ,( ) ( ) 0 1,2, ,i i x i y iM F T F F i N  (10) 

 

If the thrust of thruster i  reaches the maximum value, we 

will say that the thruster is ‘saturated’. 

 

 Finally we may have constraints on the azimuth: for each 

thruster, we define a forbidden zone, of width 2 i
 and 

direction 
0,i

, where the azimuth is not allowed. 

 

Approximate solution without constraints 

First we apply the Lagrange multipliers method to the 

approximate problem with 2m  without any constraints on 

thrust and azimuth. The Lagrangian of our minimization 

problem is composed of the total power (8) and the three 

constraints (9a-c): 

 

 (2) (2)

tot( , ) ( ) ( )F P F R F  (11) 

 

 

At an optimum, the gradient of Lagrangian must vanish: 

 

 (2) (2)0 and 0
F

 (12) 

 

Hence we have to find F  and , so that: 

 

,2 0i x i x i zc F y  (13a) 

,2 0i y i y i zc F x  (13b) 

, ,req

1

N

x i x

i

F F  (13c) 

, ,req

1

N

y i y

i

F F  (13d) 

, , ,req

1

( )
N

i y i i x i z

i

x F y F M  (13e) 

 

This linear system of equations can be written as 

 

 1Ax b x A b  (14) 

 

where the system matrix, the solution vector and the right-hand 

side vector are given by 

 

 
(2)

2 ,1

req3,3

0
, ,

0

T
NC R F

A x b
FR

 (15) 

 

where 
,0m n

 is a zero sub-matrix with m  rows and n  columns, 

(2)C  is the Hessian sub-matrix of the approximate power (2)P  

with size 2 2N N  and R  is the requirement constraints sub-

matrix with size 3 2N . 

 

Exact solution without constraints 

We are looking for a method to correct the solution found 

from (14-15) and find a better minimization of the power 

computed in the exact way, i.e. with 3 2m . To this end, we 

use the Newton-Raphson method [5]: 

 

We consider the problem ( ) 0L x , for which an 

approximate solution 
0x  could be determined using an 

approximate expression of L . We will approach the function 

L  to first order (in one dimension we can say that we consider 

L  almost equal to its tangent at that point, as shown in Figure 

2): 

 

 
0 0 0( ) ( ) '( )( )L x L x L x x x  (16a) 

 

A better approximation 
1x  is then obtained by solving 

 

 
0 0 1 00 ( ) '( )( )L x L x x x  (16b) 
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This leads to the following iterative process: 

 

 1

( )

'( )

n

n n

n

L x
x x

L x
 (16c) 

 

The monotony of L  guarantees the convergence. 

 

Applying this method to 

 

 (3 2)L P  (17) 

 

we have to solve 

 

 (3 2) ( ) ( 1) (3 2) ( ) ( ) (3 2) ( )( ) ( ) ( )k k k k kC F F C F F P F  (18) 

 

where (3 2)C  is the Hessian matrix of (3 2)P . 

 

Starting from the solution 0F  of the problem (14-15), the 

iterative process is then: 

 

 

(3 2) ( ) ( 1)

3,3

(3 2) ( ) ( ) (3 2) ( )

req

( )

0

( ) ( )

k T k

k k k

C F R F

R

C F F P F

F

 (19) 

 

Exact solution with constraints 

Taking into account the maximum thrust constraint, the 

approximate Lagrangian becomes: 

 
(2) (2)

tot( , , ) ( ) ( ) ( )F P F R F M F  (20) 

 

and (12) is supplemented with 

 

 (2) 0  (21) 

 

Hence (13a) and (13b) become: 

 

, ,2 2 0i x i x i z i x ic F y F  (22a) 

, ,2 2 0i y i y i z i y ic F x F  (22b) 

 

The gradient with respect to  does not change, hence (13c-e) 

still hold. The vanishing of the gradient with respect to  

yields: 

 

 2 2 2

, , max,x i y i iF F T  (23) 

 

These equations are non-linear in F , and this prevents us from 

implementing directly the maximum thrust constraint in the 

minimization algorithm : we need to have a first evaluation of 

F  to be able to implement (an approximation of) the constraint 

in a linear way. To handle the actuators limitations we define a 

subset J  listing all indices i  corresponding to saturated 

thrusters. The equations for the maximum thrust constraint of 

those actuators will then be added in the problem. The resulting 

set of equations can be written again as in (14), where 

 

 

(2)

0 2 ,1

3,3 3, ( ) req

0 ( ),3 ( ), ( ) 0

( ) 0

0 0 , ,

( ) 0 0 ( )

T T

N

N J

N J N J N J

C R M F F

A R x b F

M F D F

 

 (24) 

where M  is a ( ) 2N J N  matrix and 
0D F  is a ( ) 1N J  

vector, where ( )N J  is the number of indices in J . In the 

initial step, we take J  empty, that is to say that we solve (14-

15). We obtain an initial allocation 0F  that takes no limitations 

into account. This initial allocation is then used to start the 

iteration process: we compute for each actuator 

 

 
max, max, , ,( ) (arctan( ))i i i y i x iT T F F  (25) 

 

If the azimuth 
i
 is in the forbidden zone, we take the closest 

azimuth allowed (on the edge of the forbidden zone), say *

i
, 

and set: 

 

 * (old) * * (old) *

, ,cos and sinx i i i y i i iF T F T  (26) 

 

Indeed, even if the azimuth is forbidden, the thrust allocated to 

this thruster might be low. Therefore, we prefer to keep its 

value, and to construct the matrix M  and corresponding entries 

in the right-hand side vector we would rather use the equation 

 

 * * * 2 * 2 * 2

, , , , , ,2 2 ( ) ( ) ( )x i x i y i y i x i y i iF F F F F F T  (27) 

 

This defines both M  and 
0D F  and will keep the azimuth 

angle 
i  fixed. Note that by setting the azimuth to the closest 

edge of the forbidden zone, we risk to have a swap from one 

edge to the other over the time steps. To avoid this, we keep in 

memory the previous time step azimuth and if it is already on 

the edge of the forbidden zone, we will choose the same edge. 

If the constraint (10) is violated, we set 
(new)

iF  so that 

 

 max,(new) (old)

(old)

( )i i

i i

i

T
F F

T
 (28) 

 

In both cases, the index i  is added to J , and we iterate the 

process with a non-empty matrix M  this time. The iteration 

stops when J  does not change any more, which at least 
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happens when all the actuators are saturated. Sometimes it will 

then not be possible to match the required forces. 

 

Starting from the solution of (14, 24), Newton's method is used 

as in (18), and leads to solve: 

 

 

(3 2) ( ) ( 1)

0

3,3

0

(3 2) ( ) ( ) (3 2) ( )

req

0

( ) ( )

0 0

( ) 0 0

( ) ( )

( )

k T T k

k k k

C F R M F F

R

M F

C F F P F

F

D F

 (29) 

 

At the end of the iterative process, we obtain an allocation of 

forces that minimizes the power computed in the exact way, 

respects the actuators and matches the required forces in the 

best achievable way. 

 

RESULTS 
 

The test configuration consists of 4 starboard thrusters and 

4 port side thrusters, see Figure 3 for an outline and Table 1 for 

the main dimensions and the thruster characteristics. 

 

The required surge and sway forces and yaw moment that 

we use as input for the allocation algorithm are taken from a 

model test and have been filtered to take out the wave 

frequency variations. The required forces do not represent any 

specific environment, but are the output signals of the DP 

systems controller, see Figure 1. The results correspond to 

simulations for a 5 minutes time interval. Note, however, that 

each time step is solved independently from the others. To 

demonstrate the interest of the re-allocation in the 'J-loop', we 

first present – for reference purposes – the results obtained by 

solving the allocation problem without limitations for the thrust 

and azimuth. As can be seen from Figure 4, the solutions match 

exactly the required forces (with a relative error < 10
-15

). 

However, the allocation algorithm asks some thrusters to 

perform beyond their maximum thrust, as shown in Figure 5. If 

we truncate these thrust values, then the total forces and 

moment are quite different from the required values, see Figure 

6. It is noted that this is a quite crude method to deal with 

thruster saturation and that allocation algorithms in real-life DP 

systems will probably use a more advanced approach. 

Figures 7 and 8 demonstrate the effect of the 'J-loop'. The 

allocation algorithm now accounts for the maximum thrust and 

forbidden zone restrictions immediately. It re-distributes the 

extra forces left by the truncation of the thrust of PS1 and PS2 

to the other thrusters: we see that now at some point the other 

thrusters reach their maximum capacity too. When all thrusters 

are saturated, the required forces may not be exactly matched, 

but the accuracy is still satisfactory (relative error < 10
-3

). 

CONCLUSIONS AND RECOMMENDATIONS 
 

Based on the results of the comparison between the 

existing Lagrange allocation method and the improved method 

described in this paper, the following conclusions were drawn. 

 

1. We have developed a method to solve the thruster 

allocation with minimization of the exact power. The use 

of the Newton-Raphson method is to be recommended: 

depending on the configuration, it may lead to significant 

power (energy) savings and there are no drawbacks to its 

use (no loss of accuracy, satisfying computation time). 

2. An iterative process has also been studied to take the 

actuators limitations into account. This process includes 

some subtle points about the way to handle the forbidden 

zone of the azimuthing thrusters, which make the 

algorithm time-dependent. The algorithm can handle all 

types of thrusters 

3. This results in a very well-balanced allocation with a sound 

mathematical-physical basis: it both matches the 

requirements and it respects the limitations of the 

actuators. 

 

However, some improvements may still be made. Here we 

give some suggestions that may be interesting to explore in the 

future. 

 

When the minimization algorithm fails 

As we have shown previously, by adding equations to the 

minimization problem we may arrive to a point where the 

system has no solution: 

 

 Either the 3 equations for forces and moment requirements, 

combined with the maximum thrust constraints equations, 

fully determine the allocation. This happens with very 

simple configurations, but is very rare with more complex 

configurations: in complex configurations, there are a lot of 

degrees of freedom, and there will be different possibilities 

to meet the requirements (when it is possible). In these 

cases, we need to add equations to choose one possibility: 

that is the role of the energy minimization. 

 Or the total thrust required is too high, and due to the 

actuators limitations it will not be possible to reach it: the 

allocation problem has no solution. 

 

To handle these situations (which are pointed out by the 

nullity of the system matrix determinant), we suggest: 

 

 First, try to solve the linear system obtained from the forces 

and moment requirements and actuators limitations. This 

will give the only solution of the allocation problem if it 

exists. As it happens only for very simple and unrealistic 

configurations, this has not been implemented yet. 

 Then, if it appears that the requirements cannot be met, we 

should look for a compromise. As a matter of fact, we 

cannot just set automatically all the actuators to their 
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maximum thrust value, because it may lead to a global yaw 

moment very different from the required one. For the 

moment, we compare the accuracy of the different 

allocations in the 'J-loop' in terms of yaw moment, and 

choose the best one. This is a way to find a compromise, but 

it might be done in a more systematic and accurate way, for 

instance by using a penalty function. 

 

Time step dependency 

The results presented above are computed for an input of 5 

minutes, but each time step is taken independently. In reality, 

the actuators cannot change their RPM and azimuth instantly, 

and given the RPM and azimuth at time step k , it may be 

impossible to reach the RPM and azimuth that the allocation 

request at time step 1k : the time interval will not be 

sufficient, and the actuator will only reach in-between values. 

The effective total forces and moment could then be different 

from the required forces and moment, because the thrusters are 

lagging behind. This typically happens in relatively severe 

environments, close to the limitations of the vessel's 

stationkeeping capabilities. In mild environments, the thrusters 

will generally be capable of delivering the requested RPMs and 

azimuth angles. 
 

TABLES AND FIGURES 
 

Table 1: Test configuration main dimensions and thruster 

characteristics. 

Description Value 

Length of pontoon 97.50 m 

Width of pontoon 23.20 m 

Distance between pontoons 32.80m 

Maximum thrust 496 kN 

Maximum power 3000 kW 

Figure 1: Schematic overview of a DP system. 

 
 

 

Figure 2: Schematical representation of Newton’s method. Red 

curve indicates exact function, blue and green curves indicate 

successive linear (tangent) approximations. 

 
 

 

Figure 3: Test configuration with 8 azimuthing thrusters: 4 on 

the portside floater (PS1, PS2, PS3 and PS4) and 4 on the 

starboard floater (SB1, SB2, SB3 and SB4). The forbidden 

zones are indicated as grey sectors. 
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Figure 4: Results for test configuration without limitations on 

thrust and azimuth; total surge force (top left), sway force 

(middle left), yaw moment (bottom left), thrust (top right), 

azimuth (middle right) and power (bottom right); green line = 

approximate solution (a), blue line = exact solution (b), red line 

= required values (req). 

 
 

Figure 5: Results for test configuration without limitations on 

thrust and azimuth; thrust (left) and azimuth (right) of portside 

thrusters PS1-PS4; green line = approximate solution (a), blue 

line = exact solution (b), red line = maximum thrust, red bar = 

forbidden zone. 

 

Figure 6: Results for test configuration with limitations on 

thrust applied a posteriori; total surge force (top left), sway 

force (middle left), yaw moment (bottom left), thrust (top 

right), azimuth (middle right) and power (bottom right); green 

line = approximate solution (a), blue line = exact solution (b), 

red line = required values (req). 

 
 

Figure 7: Results for test configuration with limitations on 

thrust and azimuth accounted for directly in optimization 

algorithm; total surge force (top left), sway force (middle left), 

yaw moment (bottom left), thrust (top right), azimuth (middle 

right) and power (bottom right); green line = approximate 

solution (a), blue line = exact solution (b), red line = required 

values (req). 

 



 8 Copyright © 2011 by ASME 

Figure 8: Results for test configuration with limitations on 

thrust and azimuth accounted for directly in optimization 

algorithm; thrust (left) and azimuth (right) of portside thrusters 

PS1-PS4; green line = approximate solution (a), blue line = 

exact solution (b), red line = maximum thrust, red bar = 

forbidden zone. 

 

REFERENCES 
 

[1] Serraris, J.J., (MARIN), "Time-domain Analysis for DP 

Simulations", OMAE2009-79587, OMAE Conference, 

Honolulu, 2009. 

 

[2] Aalbers, A.B., Jansen, R.B.H.J., Kuipers, R.J.P.E. and van 

Walree, R., "Developments in dynamic positioning systems 

for offshore stationkeeping and offloading", OMAE 

Conference, Copenhagen, 1995. 

 

[3] Aalbers, A.B. (MARIN) and Merchant, A.A. (Keppel-

FELS), "The Hydrodynamic Model Testing for Closed Loop 

DP Assisted Mooring", OTC1996-8261, Offshore 

Technology Conference, Houston, 1996. 

 

[4] Van Dijk, R.R.T. and Aalbers, A.B. (MARIN), "What 

Happens in Water - The use of Hydrodynamics to Improve 

DP", MTS Dynamic Positioning Conference, Houston, 

2001. 

 

[5] Hildebrand, F.B., Introduction to Numerical Analysis, 2
nd

 

edition, Dover Books on Advanced Mathematics, 1987. 



 9 Copyright © 2011 by ASME 

 


