38 research outputs found

    Genomic Rearrangements in Arabidopsis Considered as Quantitative Traits.

    Get PDF
    To understand the population genetics of structural variants and their effects on phenotypes, we developed an approach to mapping structural variants that segregate in a population sequenced at low coverage. We avoid calling structural variants directly. Instead, the evidence for a potential structural variant at a locus is indicated by variation in the counts of short-reads that map anomalously to that locus. These structural variant traits are treated as quantitative traits and mapped genetically, analogously to a gene expression study. Association between a structural variant trait at one locus, and genotypes at a distant locus indicate the origin and target of a transposition. Using ultra-low-coverage (0.3×) population sequence data from 488 recombinant inbred Arabidopsis thaliana genomes, we identified 6502 segregating structural variants. Remarkably, 25% of these were transpositions. While many structural variants cannot be delineated precisely, we validated 83% of 44 predicted transposition breakpoints by polymerase chain reaction. We show that specific structural variants may be causative for quantitative trait loci for germination and resistance to infection by the fungus Albugo laibachii, isolate Nc14. Further we show that the phenotypic heritability attributable to read-mapping anomalies differs from, and, in the case of time to germination and bolting, exceeds that due to standard genetic variation. Genes within structural variants are also more likely to be silenced or dysregulated. This approach complements the prevalent strategy of structural variant discovery in fewer individuals sequenced at high coverage. It is generally applicable to large populations sequenced at low-coverage, and is particularly suited to mapping transpositions

    Major-Effect Alleles at Relatively Few Loci Underlie Distinct Vernalization and Flowering Variation in Arabidopsis Accessions

    Get PDF
    We have explored the genetic basis of variation in vernalization requirement and response in Arabidopsis accessions, selected on the basis of their phenotypic distinctiveness. Phenotyping of F2 populations in different environments, plus fine mapping, indicated possible causative genes. Our data support the identification of FRI and FLC as candidates for the major-effect QTL underlying variation in vernalization response, and identify a weak FLC allele, caused by a Mutator-like transposon, contributing to flowering time variation in two N. American accessions. They also reveal a number of additional QTL that contribute to flowering time variation after saturating vernalization. One of these was the result of expression variation at the FT locus. Overall, our data suggest that distinct phenotypic variation in the vernalization and flowering response of Arabidopsis accessions is accounted for by variation that has arisen independently at relatively few major-effect loci

    A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression

    Get PDF
    Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering

    Camera-based monitoring of cardio-respiratory signals - combining image and signal processing

    No full text

    Pleiotropic effect of the Flowering Locus C on plant resistance and defence against insect herbivores

    Get PDF
    Plants vary widely in the extent to which they defend themselves against herbivores. Because the resources available to plants are often site-specific, variation among sites dictates investment into defence and may reveal a growth-defence trade-off. Moreover, plants that have evolved different life-history strategies in different environments may situate themselves on this trade-off curve differently. For instance, plants that flower later have a longer vegetative life span and may accordingly defend themselves differently than those that flower earlier. Here, we tested whether late-flowering plants, with a longer vegetative life span, invest more in defence than early-flowering plants, using recombinant genotypes of the annual herb Cardamine hirsuta that differ in flowering time as a result of differences in the activity of the major floral repressor Flowering Locus C (FLC). We found that variation at FLC was mainly responsible for regulating flowering time and allocation to reproduction, but this partially depended on where the plants grew. We also found that variation at FLC mediated plant allocation to defence, with late-flowering plants producing higher levels of total glucosinolates and stress-related phytohormones. Nonetheless, plant growth and the qualitative values of plant defence and plant resistance against specialist herbivores were mainly independent from FLC.Synthesis. Our results highlight pleiotropic effects associated with flowering-time genes that might influence plant defence and plant-herbivore interactions
    corecore