537 research outputs found
Effects of relative phase and interactions on atom-laser outcoupling from a double-well Bose-Einstein condensate: Markovian and non-Markovian dynamics
We investigate aspects of the dynamics of a continuous atom-laser scheme
based on the merging of independently formed atomic condensates. Our
theoretical analysis covers the Markovian as well as the non-Markovian
operational regimes, and is based on a semiclassical (mean-field) two-mode
model. The role of the relative phase between the two condensates and the
effect of interatomic interactions on the evolution of the trapped populations
and the distribution of outcoupled atoms are discussed.Comment: to appear in J. Phys.
Development of intermolecular potential models for electrolyte solutions using an electrolyte SAFT-VR Mie equation of state
We present a theoretical framework and parameterisation of intermolecular potentials for aqueous electrolyte solutions using the statistical associating fluid theory based on the Mie interaction potential (SAFT-VR Mie), coupled with the primitive, non-restricted mean-spherical approximation (MSA) for electrolytes. In common with other SAFT approaches, water is modelled as a spherical molecule with four off-centre association sites to represent the hydrogen-bonding interactions; the repulsive and dispersive interactions between the molecular cores are represented with a potential of the Mie (generalised Lennard-Jones) form. The ionic species are modelled as fully dissociated, and each ion is treated as spherical: Coulombic ion–ion interactions are included at the centre of a Mie core; the ion–water interactions are also modelled with a Mie potential without an explicit treatment of ion–dipole interaction. A Born contribution to the Helmholtz free energy of the system is included to account for the process of charging the ions in the aqueous dielectric medium. The parameterisation of the ion potential models is simplified by representing the ion–ion dispersive interaction energies with a modified version of the London theory for the unlike attractions. By combining the Shannon estimates of the size of the ionic species with the Born cavity size reported by Rashin and Honig, the parameterisation of the model is reduced to the determination of a single ion–solvent attractive interaction parameter. The resulting SAFT-VRE Mie parameter sets allow one to accurately reproduce the densities, vapour pressures, and osmotic coefficients for a broad variety of aqueous electrolyte solutions; the activity coefficients of the ions, which are not used in the parameterisation of the models, are also found to be in good agreement with the experimental data. The models are shown to be reliable beyond the molality range considered during parameter estimation. The inclusion of the Born free-energy contribution, together with appropriate estimates for the size of the ionic cavity, allows for accurate predictions of the Gibbs free energy of solvation of the ionic species considered. The solubility limits are also predicted for a number of salts; in cases where reliable reference data are available the predictions are in good agreement with experiment
Recommended from our members
A new framework architecture for next generation e-Health services
The challenge for fast and low-cost deployment of ubiquitous personalized e-Health services has prompted us to propose a new framework architecture for such services. We have studied the operational features and the environment of e-Health services and we led to a framework structure that extends the ETSI/Parlay architecture, which is used for the deployment of standardized services over the next generation IP networks. We expanded the ETSI/Parlay architecture with new service capability features as well as sensor, profiling and security mechanisms. The proposed framework assists the seamless integration, within the e-Health service structure, of diverse facilities provided by both the underlying communication and computing infrastructure as well as the patient's bio and context sensor networks. Finally, we demonstrate the deployment of a tele-monitoring service in smart home environment based on the proposed framework architecture
Predictive models for the phase behaviour and solution properties of weak electrolytes: nitric, sulfuric and carbonic acid
The distribution of ionic species in electrolyte systems is important in many fields of science and engineering, ranging from the study of degradation mechanisms to the design of systems for electrochemical energy storage. Often, other phenomena closely related to the ionic speciation, such as ion pairing, clustering and hydrogen bonding, which are difficult to investigate experimentally, are also of interest. Here, we develop an accurate molecular approach, accounting for reactions as well as association and ion pairing, to deliver a predictive framework that helps validate experiment and guides future modelling of speciation phenomena of weak electrolytes. We extend the SAFT-VRE Mie equation of state [D. K. Eriksen et al., Mol. Phys., 2016, 114, 2724–2749] to study aqueous solutions of nitric, sulphuric and carbonic acid, considering complete and partially dissociated models. In order to incorporate the dissociation equilibria, correlations to experimental data for the relevant thermodynamic equilibrium constants of the dissociation reactions are taken from the literature and are imposed as a boundary condition in the calculations. The models for water, the hydronium ion, and carbon dioxide are treated as transferable and are taken from our previous work. Here we present new molecular models for nitric acid, and the nitrate, bisulfate, sulfate, and bicarbonate anions. The resulting framework is used to predict a range of phase behaviour and solution properties of the aqueous acids over wide ranges of concentration and temperature, including the degree of dissociation, as well as the activity coefficients of the ionic species, and the activity of water and osmotic coefficient, density, and vapour pressure of the solutions. The SAFT-VRE Mie models obtained in this manner provide a means of elucidating the mechanisms of association and ion pairing in the systems studied, complementing the experimental observations reported in the literature
Non-Markovian dynamics in atom-laser outcoupling from a double-well Bose-Einstein condensate
We investigate the dynamics of a continuous atom laser based on the merging
of independently formed atomic condensates. In a first attempt to understand
the dynamics of the system, we consider two independent elongated Bose-Einstein
condensates which approach each other and focus on intermediate inter-trap
distances so that a two-mode model is well justified. In the framework of a
mean-field theory, we discuss the quasi steady-state population of the traps as
well as the energy distribution of the outcoupled atoms.Comment: 21 pages, 9 figure, to appear in J. Phys.
Recommended from our members
Formation of Toxic Unsaturated Multifunctional and Organosulfur Compounds From the Photosensitized Processing of Fluorene and DMSO at the Air-Water Interface
Polycyclic aromatic hydrocarbons and dimethyl sulfoxide (DMSO) are ubiquitous at the sea surface. Photochemistry at the air-sea interface is a potentially important source of volatile organic compounds, but the relevant chemical processes are currently not well known. When aqueous solutions containing a mixture of fluorene (FL) and DMSO are irradiated with actinic radiation, a large suite of unsaturated high molecular weight compounds appear in the aqueous phase; a broad variety of saturated and unsaturated oxygenated multifunctional compounds are also observed in the gas phase, most of which are more toxic than FL. A possible sequence of steps leading to some of the observed compounds in aqueous solution as well as in the gas phase is proposed. The reaction pathways initiated by excited triplet state of FL (3FL*) are supported by theoretical calculations of the reaction Gibbs energies. The formation of organosulfur compounds has been observed to occur in the gas and the aqueous phases initiated by the reaction between 3FL* and DMSO. The aforementioned photosensitized chemistry at the water surface can have an important impact on the formation of secondary organic aerosol in marine boundary layer as polycyclic aromatic hydrocarbons and DMSO enriched at the water surface are ubiquitous. ©2020. American Geophysical Union. All Rights Reserved
Wearable devices for assessing function in Alzheimer’s disease: a European public involvement activity about the features and preferences of patients and caregivers
Background: Alzheimer's Disease (AD) impairs the ability to carry out daily activities, reduces independence and quality of life and increases caregiver burden. Our understanding of functional decline has traditionally relied on reports by family and caregivers, which are subjective and vulnerable to recall bias. The Internet of Things (IoT) and wearable sensor technologies promise to provide objective, affordable, and reliable means for monitoring and understanding function. However, human factors for its acceptance are relatively unexplored.
Objective: The Public Involvement (PI) activity presented in this paper aims to capture the preferences, priorities and concerns of people with AD and their caregivers for using monitoring wearables. Their feedback will drive device selection for clinical research, starting with the study of the RADAR-AD project.
Method: The PI activity involved the Patient Advisory Board (PAB) of the RADAR-AD project, comprised of people with dementia across Europe and their caregivers (11 and 10, respectively). A set of four devices that optimally represent various combinations of aspects and features from the variety of currently available wearables (e.g., weight, size, comfort, battery life, screen types, water-resistance, and metrics) was presented and experienced hands-on. Afterwards, sets of cards were used to rate and rank devices and features and freely discuss preferences.
Results: Overall, the PAB was willing to accept and incorporate devices into their daily lives. For the presented devices, the aspects most important to them included comfort, convenience and affordability. For devices in general, the features they prioritized were appearance/style, battery life and water resistance, followed by price, having an emergency button and a screen with metrics. The metrics valuable to them included activity levels and heart rate, followed by respiration rate, sleep quality and distance. Some concerns were the potential complexity, forgetting to charge the device, the potential stigma and data privacy.
Conclusions: The PI activity explored the preferences, priorities and concerns of the PAB, a group of people with dementia and caregivers across Europe, regarding devices for monitoring function and decline, after a hands-on experience and explanation. They highlighted some expected aspects, metrics and features (e.g., comfort and convenience), but also some less expected (e.g., screen with metrics)
Dietary and other lifestyle characteristics of Cypriot school children: results from the nationwide CYKIDS study
Dietary and lifestyle behaviors at young ages have been associated with the development of various chronic diseases. Schools are regarded as an excellent setting for lifestyle modification; there is a lack, however, of published dietary data in Cypriot school children. Thus, the objective of this work was to describe lifestyle characteristics of a representative segment of Cypriot school children and provide implications for school health education. Methods. The CYKIDS (Cyprus Kids Study) is a national, cross-sectional study conducted among 1140 school children (10.7 0.98 years). Sampling was stratified and multistage in 24 primary schools of Cyprus. Dietary assessment was based on a 154-item semi-quantitative food-frequency questionnaire and three supplementary questionnaires, assessing dietary patterns and behaviors. Adherence to the Mediterranean diet was evaluated by the KIDMED index (Mediterranean Diet Quality Index for children and adolescents). Physical activity was assessed by a 32-item, semi-quantitative questionnaire. Results. Analysis revealed that 6.7% of the children were classified as high adherers, whereas 37% as low adherers to the Mediterranean diet. About 20% of boys and 25% of girls reported "not having breakfast on most days of the week", while more than 80% of the children reported having meals with the family at least 5 times/week. Some food-related behaviors, such as intake of breakfast, were associated with socio-demographic factors, mostly with gender and the geomorphological characteristics of the living milieu. With respect to physical activity, boys reported higher levels compared to girls, however, one fourth of children did not report any kind of physical activity. Conclusion. A large percentage of Cypriot school children have a diet of low quality and inadequate physical activity. Public health policy makers should urgently focus their attention to primary school children and design school health education programs that target the areas that need attention in order to reduce the future burden of metabolic disorders and chronic diseases
Geriatric pharmacotherapy : optimisation through integrated approach in the hospital setting
Since older patients are more vulnerable to adverse drug-related events, there is a need to ensure appropriate prescribing in these patients in order to prevent misuse, overuse and underuse of drugs. Different tools and strategies have been developed to reduce inappropriate prescribing; the available measures can be divided into medication assessment tools, and specific interventions to reduce inappropriate prescribing. Implicit criteria of inappropriate prescribing focus on appropriate dosing, search for drug-drug interactions, and increase adherence. Explicit criteria are consensus-based standards focusing on drugs and diseases and include lists of drugs to avoid in general or lists combining drugs with clinical data. These criteria take into consideration differences between patients, and stand for a medication review, by using a systematic approach. Different types of interventions exist in order to reduce inappropriate prescribing in older patients, such as: educational interventions, computerized decision support systems, pharmacist-based interventions, and geriatric assessment. The effects of these interventions have been studied, sometimes in a multifaceted approach combining different techniques, and all types seem to have positive effects on appropriateness of prescribing. Interdisciplinary teamwork within the integrative pharmaceutical care is important for improving of outcomes and safety of drug therapy. The pharmaceutical care process consists offour steps, which are cyclic for an individual patient. These steps are pharmaceutical anamnesis, medication review, design and follow-up of a pharmaceutical care plan. A standardized approach is necessary for the adequate detection and evaluation of drug-related problems. Furthermore, it is clear that drug therapy should be reviewed in-depth, by having full access to medical records, laboratory values and nursing notes. Although clinical pharmacists perform the pharmaceutical care process to manage the patient’s drug therapy in every day clinical practice, the physician takes the ultimate responsibility for the care of the patient in close collaboration with nurses
- …