25 research outputs found

    Chimpanzee (Pan troglodytes) Precentral Corticospinal System Asymmetry and Handedness: A Diffusion Magnetic Resonance Imaging Study

    Get PDF
    Most humans are right handed, and most humans exhibit left-right asymmetries of the precentral corticospinal system. Recent studies indicate that chimpanzees also show a population-level right-handed bias, although it is less strong than in humans.We used in vivo diffusion-weighted and T1-weighted magnetic resonance imaging (MRI) to study the relationship between the corticospinal tract (CST) and handedness in 36 adult female chimpanzees. Chimpanzees exhibited a hemispheric bias in fractional anisotropy (FA, left>right) and mean diffusivity (MD, right>left) of the CST, and the left CST was centered more posteriorly than the right. Handedness correlated with central sulcus depth, but not with FA or MD.These anatomical results are qualitatively similar to those reported in humans, despite the differences in handedness. The existence of a left>right FA, right>left MD bias in the corticospinal tract that does not correlate with handedness, a result also reported in some human studies, suggests that at least some of the structural asymmetries of the corticospinal system are not exclusively related to laterality of hand preference

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions

    Data for: The temporal involvement of the left supramarginal gyrus in planning functional grasps: a neuronavigated TMS study

    No full text
    Preprocessed Reaction Times (RTs) and Movement Times (MTs) for planning functional grasps of tools, and the associated movement response durations. For details, see Main Text

    Data for: The temporal involvement of the left supramarginal gyrus in planning functional grasps: a neuronavigated TMS study

    No full text
    Preprocessed Reaction Times (RTs) and Movement Times (MTs) for planning functional grasps of tools, and the associated movement response durations. For details, see Main Text.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    The temporal involvement of the left supramarginal gyrus in planning functional grasps: A neuronavigated TMS study

    No full text
    The left supramarginal gyrus (SMG) is a critical structure in tool use actions, including such simple acts as selection of appropriate grasps and, if necessary, their on-line corrections. Yet, its temporal contribution to initial planning of functional grasps of tools is largely unknown. We used MRI-guided, event-related transcranial magnetic stimulation (TMS) to determine the time point when SMG involvement in processing of tools for functional grasp decision was affected most. In Exp. 1, with 15 participants, triple-pulse (10 Hz) TMS was applied to either the left anterior-to-mid SMG (amSMG; subdivisions PFt/PF) or vertex at three different time points: starting from 17 ms (i.e., delivered at 17/117/217 ms), 117 ms (117/217/317 ms) or 217 ms (217/317/417 ms) after stimulus onset. In Exp. 2, with 12 participants, we applied single-pulse TMS to either left amSMG or the left rostral middle frontal gurus (rMFG; area 46) at these same time points relative to stimulus onset. Subject- and item-based analyses of response times (RTs) were performed. Whereas the amSMG and vertex stimulation with triple pulse has revealed differential effects on RTs in general, as well as on tool orientation processing, it gave only vague pointers as to their temporal contributions to the task. Yet, amSMG and rMFG stimulation with single pulse demonstrated that, while the processing in both of these areas can be enhanced at 17 ms and no doubt at 117 ms (as compared to 217 ms), the earliest stimulation facilitated amSMG (vs. rMFG) contribution, and the latest stimulation had the opposite effect, facilitating rMFG (vs. amSMG) contribution to planning functional grasps. These outcomes demonstrate that the critical role of SMG in tool-related actions can be invoked substantially earlier than previously thought. (C) 2018 Elsevier Ltd. All rights reserved

    Pitch Processing of Speech : Comparison of Psychoacoustic and Electrophysiological Data

    No full text
    The present study consisted of two experiments. The goal of the first experiment was to establish the just noticeable differences for the fundamental frequency of the vowel /u/ by using the 2AFC method. We obtained the threshold value for 27 cents. This value is larger than the motor reaction values which had been observed in previous experiments (e.g. 9 or 19 cents). The second experiment was intended to provide neurophysiological confirmation of the detection of shifts in a frequency, using event-related potentials (ERPs). We concentrated on the mismatch negativity (MMN) - the component elicited by the change in the pattern of stimuli. Its occurrence is correlated with the discrimination threshold. In our study, MMN was observed for changes greater than 27 cents - shifts of ±50 and 100 cents (effect size - Cohen’s d = 2.259). MMN did not appear for changes of ±10 and 20 cents. The results showed that the values for which motor responses can be observed are indeed lower than those for perceptual thresholds
    corecore