1,598 research outputs found

    SRC seal testing

    Get PDF
    Small venthole drilled in semisealed silicon-controlled rectifier (SCR) cavity eliminates entrapped helium. Although these devices show slightly greater leak than those before lead installation, it is now possible to distinguish device with good hermetic seal from defective one

    Practical learning method for multi-scale entangled states

    Full text link
    We describe a method for reconstructing multi-scale entangled states from a small number of efficiently-implementable measurements and fast post-processing. The method only requires single particle measurements and the total number of measurements is polynomial in the number of particles. Data post-processing for state reconstruction uses standard tools, namely matrix diagonalisation and conjugate gradient method, and scales polynomially with the number of particles. Our method prevents the build-up of errors from both numerical and experimental imperfections

    A Processor Extension for Cycle-Accurate Real-Time Software

    Get PDF
    Certain hard real-time tasks demand precise timing of events, but the usual software solution of periodic interrupts driving a scheduler only provides precision in the millisecond range. NOP-insertion can provide higher precision, but is tedious to do manually, requires predictable instruction timing, and works best with simple algorithms. To achieve high-precision timing in software, we propose instruction-level access to cycle-accurate timers. We add an instruction that waits for a timer to expire then reloads it synchronously. Among other things, this provides a way to exactly specify the period of a loop. To validate our approach, we implemented a simple RISC processor with our extension on an FPGA and programmed it to behave like a video controller and an asynchronous serial receiver. Both applications were much easier to write and debug than their hardware counterparts, which took roughly four times as many lines in VHDL. Simple processors with our extension brings software-style development to a class of applications that were once only possible with hardware

    Quantum communication using a bounded-size quantum reference frame

    Full text link
    Typical quantum communication schemes are such that to achieve perfect decoding the receiver must share a reference frame with the sender. Indeed, if the receiver only possesses a bounded-size quantum token of the sender's reference frame, then the decoding is imperfect, and we can describe this effect as a noisy quantum channel. We seek here to characterize the performance of such schemes, or equivalently, to determine the effective decoherence induced by having a bounded-size reference frame. We assume that the token is prepared in a special state that has particularly nice group-theoretic properties and that is near-optimal for transmitting information about the sender's frame. We present a decoding operation, which can be proven to be near-optimal in this case, and we demonstrate that there are two distinct ways of implementing it (corresponding to two distinct Kraus decompositions). In one, the receiver measures the orientation of the reference frame token and reorients the system appropriately. In the other, the receiver extracts the encoded information from the virtual subsystems that describe the relational degrees of freedom of the system and token. Finally, we provide explicit characterizations of these decoding schemes when the system is a single qubit and for three standard kinds of reference frame: a phase reference, a Cartesian frame (representing an orthogonal triad of spatial directions), and a reference direction (representing a single spatial direction).Comment: 17 pages, 1 figure, comments welcome; v2 published versio

    Verifying multi-partite mode entanglement of W states

    Get PDF
    We construct a method for verifying mode entanglement of N-mode W states. The ideal W state contains exactly one excitation symmetrically shared between N modes, but our method takes the existence of higher numbers of excitations into account, as well as the vacuum state and other deviations from the ideal state. Moreover, our method distinguishes between full N-party entanglement and states with M-party entanglement with M<N, including mixtures of the latter. We specialize to the case N=4 for illustrative purposes. In the optical case, where excitations are photons, our method can be implemented using linear optics.Comment: 11 pages, 12 figure

    Shock-Wave Experiment with the Chelyabinsk LL5 Meteorite : Experimental Parameters and the Texture of the Shock-Affected Material

    Get PDF
    A spherical geometry shock experiment with the light-colored lithology material of the Chelyabinsk LL5 ordinary chondrite was carried out. The material was affected by shock and thermal metamorphism whose grade ranged from initial stage S3-4 to complete melting. The temperature and pressure were estimated at >2000 degrees C and >90 GPa. The textural shock effects were studied by optical and electron microscopy. A single experimental impact has produced the whole the range of shock pressures and temperatures and, correspondingly, four zones identified by petrographic analysis: (1) a melt zone, (2) a zone of melting silicates, (3) a black ring zone, and (4) a zone of weakly shocked initial material. The following textural features of the material were identified: displacement of the metal and troilite phases from the central melt zone; the development of a zone of mixed lithology (light-colored fragments in silicate melt); the origin of a dark-colored lithology ring; and the generation of radiating shock veinlets. The experimental sample shows four textural zones that correspond to the different lithology types of the Chelyabinsk LL5 meteorite found in fragments of the meteoritic shower in the collection at the Ural Federal University. Our results prove that shock wave loading experiment can be successfully applied in modeling of space shocks and can be used to experimentally model processes at the small bodies of the solar system.Peer reviewe

    Anisotropy and internal field distribution of MgB2 in the mixed state at low temperatures

    Get PDF
    Magnetization and muon spin relaxation on MgB2 were measured as a function of field at 2 K. Both indicate an inverse-squared penetration depth strongly decreasing with increasing field H below about 1 T. Magnetization also suggests the anisotropy of the penetration depth to increase with increasing H, interpolating between a low Hc1 and a high Hc2 anisotropy. Torque vs angle measurements are in agreement with this finding, while also ruling out drastic differences between the mixed state anisotropies of the two basic length scales penetration depth and coherence length.Comment: 4 pages, 4 figure
    corecore