
A Processor Extension for Cycle-Accurate

Real-Time Software

Nicholas Jun Hao Ip and Stephen A. Edwards?

Department of Computer Science, Columbia University

Abstract. Certain hard real-time tasks demand precise timing of events,
but the usual software solution of periodic interrupts driving a scheduler
only provides precision in the millisecond range. NOP-insertion can pro-
vide higher precision, but is tedious to do manually, requires predictable
instruction timing, and works best with simple algorithms.
To achieve high-precision timing in software, we propose instruction-level
access to cycle-accurate timers. We add an instruction that waits for a
timer to expire then reloads it synchronously. Among other things, this
provides a way to exactly specify the period of a loop.
To validate our approach, we implemented a simple RISC processor with
our extension on an FPGA and programmed it to behave like a video
controller and an asynchronous serial receiver. Both applications were
much easier to write and debug than their hardware counterparts, which
took roughly four times as many lines in VHDL. Simple processors with
our extension brings software-style development to a class of applications
that were once only possible with hardware.

1 Introduction

How do you write a piece of software that runs at a specific rate? The most
primitive way—familiar to those of us who cut our teeth programming eight-
bit microprocessors—is to carefully count the number of cycles taken by each
instruction and insert NOPs to pad it out to achieve specific temporal behavior.

While NOP insertion provides precise control, it relies on predictable instruc-
tion timing, simple control structures, and either compiler support or a patient
programmer. Dean’s software thread integration [1–3] takes the idea farther: his
compiler pads a non-real-time thread with code from a real-time thread.

Periodic timer interrupts are the usual alternative to NOP insertion. Such
interrupts usually trigger a real-time scheduler that can resume threads at a
particular “tick.” Virtually all modern operating systems use this technique.

Precision is the main limitation of the periodic timer interrupt approach. A
longer period is preferred to reduce overhead (Linux is typical: it uses a 10 ms
clock) since each tick takes time away from useful tasks by requiring an interrupt
and the execution of a scheduling algorithm. Some, such as Kohout et al. [4],
implement the scheduler in hardware to address the overhead.

? Edwards and his group are supported by an nsf career award, gifts from Intel and
Altera, and grants from the src and New York State’s nystar program.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161438608?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The precision of the periodic timer-based approach is limited by factors such
as the interrupt frequency, how long interrupts are ever disabled in any piece of
software, the execution time of the real-time scheduler code, and the presence
of higher-priority tasks on the system. It typically only achieves a resolution in
the millisecond range. Furthermore, a variety of fencepost-like pitfalls make this
technique even less predictable. Labrosse [5, §2.32] discusses these issues.

We propose a processor architecture extension—an instruction that accesses
timers—able to prescribe cycle-level timing. The idea is simple and powerful: to
allow program to specify exactly how many cycles it will take to execute. This
extension enables elegant software to have the timing precision of hardware.
We realized our approach by implementing on an FPGA a processor that we
programmed to generate video and receive asynchronous serial communication.

Our extension introduces an assembly-level deadline instruction1 that con-
trols a small set of cycle timers that count down to zero and wait. The operands
of a deadline instruction are a timer and a new count for the timer. When ex-
ecuted, deadline delays until its timer has reached zero, then reloads the timer
and immediately executes the next instruction. If the timer has already reached
zero, which usually means that the intended deadline has already passed, the
deadline instruction simply reloads the timer and continues.

Putting a deadline instruction at the beginning of a block of code that ends
with another deadline, therefore, guarantees that the block runs in at least the
amount of time given by the argument to deadline. Furthermore, putting a single
deadline instruction inside a loop forces the period of the loop to be no less than
the delay value. In both cases, if the code takes longer than the given number of
cycles to execute, the deadline instruction does essentially nothing. Worst-case
execution time analysis must still be performed to guarantee a given deadline will
always be met, but at least such analysis is not integral to achieving a particular
timing behavior, unlike NOP insertion.

Another advantage of our approach is that a program that meets all its
deadlines will still run correctly (i.e., at the same rate) on a faster processor
provided all deadline cycle counts are adjusted for the higher clock frequency.

Our technique is best for hard real-time embedded systems with tight, short
deadlines; periodic interrupts work fine for systems needing less precise timing
control. We intend our technique to be used for multi-core processors in em-
bedded systems, i.e., where each real-time task has a dedicated processor. Our
goal is to provide a software-style approach to implementing behavior that was
previously possible only in hardware.

To validate our approach, we implemented a MIPS-like processor on an
FPGA and programmed two tasks: a text-mode video controller and an asyn-
chronous serial receiver with auto-baud-rate detection. Although hardware for
such functionality has existed for years and carefully-written software has also
achieved such behavior, we believe our approach is the easiest yet.

1 Unlike our deadline, the common wait-for-interrupt instruction needs an external
timer interrupt whose behavior must also be controlled.

2 Related Work

Previous approaches have modified the processor or a language, rarely both.
Henzinger and Kirsch’s Giotto [6] language prescribes task timing. Its run-

time system relies on traditional RTOS scheduling algorithms, which is both
a positive—they are able to leverage the extensive work on scheduling—and a
negative—it only provides coarse-grained timing control.

The synchronous languages Esterel [7] and Lustre [8] provide cycle-level con-
trol over concurrent software. Their cycles, however, are coarse, equal to the
worst-case execution time of the main program loop. Roop et al. [9] propose a
processor for Esterel, but their focus is performance, not predictability.

Dean’s software thread integration (STI) [3] takes a different approach to
achieving timing precision. STI inserts code from a high-priority foreground pro-
cess into code for a best-effort background process. Programmer-supplied con-
straints direct the process, which increases the size of the executable between 12
and 15× (see Welch et al. [3]) because foreground loops are unrolled.

STI requires minimal hardware support (i.e., predictable instruction timing—
something common in small embedded processors), but extensive compiler sup-
port, simple (predictable) control structures, and can generate very large code.

Real-time guarantees demand worst-case execution time analysis. WCET
analysis always involves conservative approximations because the problem is
intractable in general, and the problem is especially difficult for modern pro-
cessors. For example, Ferdinand et al. [10] tackle the problem for avionics code
with simple control structures, but find even this is difficult because of the shared
instruction and data cache of the target Motorola ColdFire CPU.

Engblom [12] notes there are few accurate timing models for modern proces-
sors, due partially to poor documentation, but but also because the designers
treat such models as treasured intellectual property. So even if the analysis of
the code were flawless, the WCET may still be wrong.

WCET is necessary in our approach if we want to prove that a program
will meet all its deadlines (i.e., reach each deadline statement before its timer
has expired), but we do not need WCET to produce a working program, unlike
NOP-insertion techniques such as STI.

The Virtual Simple Architecture (VISA) of Frank Mueller et al. [13, 14] at-
tacks WCET by running run real-time tasks on a slow processor with predictable
timing. At the same time, they run the same real-time tasks and additional soft-
real-time tasks on a faster, less-predictable processor. If the simple processor
overtakes the faster one, they switch to the simpler one to meet deadlines.

A few groups have proposed alternative processor architectures for real-time
systems. For example, a group of processors can run Java bytecode [15, 16].
None, however, provide a scheduling mechanism any more precise than the usual
periodic timer interrupt approach used on more general-purpose processors.

As discussed earlier, timer-interrupt-based scheduling introduces overhead,
so some, such as Kohout et al. [4] and Xyron Semiconductor, have implemented
real-time scheduling algorithms in hardware to alleviate this problem. However,
such techniques do not provide the predictability of our approach.

add Rd, Rs, Rt Integer add
addi Rd, Rs, imm16 Integer add immediate
and Rd, Rs, Rt Logical AND
andi Rd, Rs, imm16 Logical AND immediate
be Rd, Rs, offset Branch on equal
bne Rd, Rs, offset Branch on not equal
j target Unconditional jump
lb Rd, (Rt + Rs) Load byte
lbi Rd, (Rs + offset) Load byte immediate
mov Rd, Rs Move register (synonym)
movi Rd, imm16 Move immediate (synonym)
nand Rd, Rs, Rt Logical NAND
nandi Rd, Rs, imm16 Logical NAND immediate
nop No operation
nor Rd, Rs, Rt Logical NOR
nori Rd, Rs, imm16 Logical NOR immediate

or Rd, Rs, Rt Logical OR
ori Rd, Rs, imm16 Logical OR immediate
sb Rd, (Rt + Rs) Store byte
sbi Rd, (Rs + offset) Store byte immediate
sll Rd, Rs, Rt Shift left logical
slli Rd, Rs, imm16 Shift left logical immediate
srl Rd, Rs, Rt Shift right logical
srli Rd, Rs, imm16 Shift right logical immediate
sub Rd, Rs, Rt Integer subtract
subi Rd, Rs, imm16 Integer subtract immediate
dead T, Rs Wait for timer and reload
deadi T, imm16 Wait for timer immediate
xnor Rd, Rs, Rt Exclusive NOR
xnori Rd, Rs, imm16 Exclusive NOR immediate
xor Rd, Rs, Rt Exclusive OR
xori Rd, Rs, imm16 Exclusive OR immediate

General-purpose

Registers

15 0
$0 (= 0)

$1

$2

.

.

.

$13

$14

$15

Timers
15 0

$t0

$t1

$t2

$t3

Program counter

15 0
$pc

Register Instructions

31 26 25 21 20 16 15 11 10 0

RtRsRdOP

Immediate Instructions

31 26 25 21 20 16 15 0

immRsRdOP

Fig. 1. Instruction set, Programmer’s Model, and Instruction Encoding

3 Our Real-Time Processor

To validate our instruction-level timer extension, we implemented a 25 MHz
MIPS-like processor in VHDL on a Xilinx Spartan 3 XC3S200 FPGA. Its de-
sign was deliberately simple. It executes a single instruction per cycle with no
pipelining. It is centered around a sixteen-bit ALU and sixteen general-purpose
registers (register zero always returns zero). Its only novelty is the group of
sixteen-bit timer registers, which are controlled by the deadline instruction.

Figure 1 shows the instruction formats. We employed a Harvard architecture
with 32-bit-wide instructions. Both program and data memory reside on chip.
Our applications only required byte-wide data, so our processor only provides
byte-wide load and store instructions (data is zero-extended on load).

The instruction set, Figure 1, is unremarkable. Arithmetic instructions come
in three-register and two-register-with-immediate variants. It is a load/store ar-
chitecture: only the LB/LBI and SB/SBI instructions transfer bytes to/from
memory. The mov instruction is a synonym for or with register $0.

3.1 The Deadline Instruction

The deadline instruction is the main novelty in our processor. It has two formats:

dead T, Rs

deadi T, imm16

where T is one of the four timer registers $t0, $t1, $t2, or $t3, Rs is one of the
sixteen general-purpose registers, and imm16 is a 16-bit immediate data value.

deadi $t0, 8
add $r1, $r2, $r3
deadi $t0, 10
add $r1, $r2, $r3
(a)

cycle instruction $t0

−4 deadi $t0, 8 3

−3 " 2
−2 " 1
−1 " 0

0 add $r1, $r2, $r3 7

1 deadi $t0, 10 6

2 " 5
...
...

...
7 " 0

8 cycles

8 add $r1, $r2, $r3 9
(b)

Fig. 2. (a) A code frag-
ment with two deadline

instructions and (b) its
temporal behavior. The
deadline instruction guar-
antees the two add in-
structions are executed 8
cycles apart.

Each timer register counts down one per cycle, stopping when it reaches zero.
When execution reaches a deadline instruction, it pauses there until the given
timer register reaches zero. In the cycle following the one in which the timer has
a zero count, the timer is reloaded with the source value, either from a register
or an immediate value, and the instruction following the deadline executes.

Figure 2 illustrates the operation of the deadline instruction. Here, it is being
used to ensure that exactly eight cycles occcur between the end of the first
deadline and the end of the second. To achieve this, the second deadline delays
for seven cycles to compensate for the single cycle add instruction. Assuming the
timer $t0 has value 3 when the first deadline is executed, it waits until the timer
elapses. (This is implicitly assuming the timer had been set at the beginning
of an earlier block.) In the cycle following this (cycle 0 in the figure), the first
add instruction executes, then the second deadline delays until cycle 8, when
the second add instruction starts. The semantics of the deadline instruction
therefore guarantee that the code between the two deadlines takes exactly eight
cycles to execute, provided it does not require more.

Using deadline instructions is preferable to padding the program with NOPs,
the usual technique for achieving such precise timing. A key advantage is that
code using deadline does not have to know its execution time. For example,
using deadline can deal with loops with a variable (but bounded) number of
iterations; inserting NOPs would require the program, at runtime, to calculate
the number of cycles the loop took and then delay for the remaining amount
of time. Especially when each iteration of the loop is variable (e.g., because of
conditionals), this can grow very complex.

Reduced code size is another advantage. Except where no NOP-padding is
necessary, fewer deadline instructions are necessary to achieve the same effect.

Finally, our approach produces a sort of temporal binary compatibility. Pro-
vided the numbers loaded in the timers are corrected, a program using our
technique that meets all its deadlines will behave identically (i.e., with the same
timing and function) on a faster processor.

3.2 Ramifications

Our prototype processor is simple and easy to modify; we expect adding such
a deadline instruction to other designs will be just as easy. Modern processors
have pipelines and other mechanisms for hiding latency, but since deadline only
manipulates special-purpose registers and then only rarely, it should not sub-
stantially complicate a pipeline. The delaying effect of the deadline instruction
should be able to utilize the standard stalling ability of a pipeline.

We intend our extension to be used in a setting where there are many small
processors, each running a single hard real-time task. While this is less flexi-
ble than an operating system environment, we believe such inflexibility is wise
for embedded systems with strict hard real-time constraints. The move toward
multi-core processors makes this all the more plausible.

We doubt the deadline instruction would work in a multitasking operating
system setting, which strives to give processes the illusion of having the processor
to themselves. An OS would save and restore timers on context switches, decre-
menting them when the process is running. However, a näıve scheduler would
not be enough to achieve timing goals.

While running multiple hard real-time tasks on a single processor is attrac-
tive, it leads to the usual challenges of priority assignment, schedulability, etc.
One simple case is when a processor is running a single hard real-time task and
multiple best-effort ones. In this case, the real-time task could use the dead-

line instruction to set and achieve deadlines and the processor could run the
best-effort tasks when the real-time task was waiting for a timer to expire.

4 A Text-Mode Video Display Controller

To evaluate our processor, we programmed it to behave as a text-mode video
controller. A VGA (640×480) pixel clock is a little over 25 MHz—the clock
frequency our processor achieved on the FPGA—so it not fast enough to do
something interesting for each pixel. We made register $14 feed an eight-bit
video shift register, although we could have used memory-mapped I/O.

Figure 3 shows the complete assembly code for our text-mode video con-
troller. Lines 1–3 initializes three constants: the number of character columns (80),
the total number of characters to be displayed on the screen (we display an 80
× 30 grid), and the height of each character (16 scan lines).

The code on lines 6–47 generates ten blank lines (the back porch), two lines of
vertical synchronization, then thirty-three blank lines (the front porch). Each of
these uses a loop over each line, and in each loop, timer $t1 is used to ensure each
line is exactly 800 pixel cycles long: 96 cycles of horizontal synchronization, 48
cycles of back porch, 640 active cycles, and 16 cycles of front porch.

Lines 50–76 is a collection of three nested loops (for characters, lines, and
rows) handles the active lines of video. Lines 63–69 fetches each character (line 64
and loads the pixel data for the current line of the character (line 67) into the
shift register. Since each character is eight pixels across, the shift register is

1 movi $11, 80 ; # columns
2 movi $12, 2400 ; = 80 × 30
3 movi $13, 16 ; lines/character
4
5 field:
6 ; Vertical front porch

7 movi $1, 0
8 movi $2, 10 ; number of lines
9 vfrontporch:

10 deadi$t1, 96 ; h. sync period
11 movi $14, VB+HS+HB
12 deadi$t1, 48 ; back porch
13 movi $14, VB+HB
14 deadi$t1, 640 ; active region
15 movi $14, VB
16 deadi$t1, 16 ; front porch
17 movi $14, VB+HB
18 addi $1, $1, 1
19 bne $1, $2, vfrontporch
20 ; Vertical sync

21 movi $1, 0
22 movi $2, 2 ; number of lines
23 vsync:
24 deadi$t1, 96
25 movi $14, VS+VB+HS+HB
26 deadi$t1, 48
27 movi $14, VS+VB+HB
28 deadi$t1, 640
29 movi $14, VS+VB
30 deadi$t1, 16
31 movi $14, VS+VB+HB
32 addi $1, $1, 1
33 bne $1, $2, vsync
34 ; Vertical back porch

35 movi $1, 0
36 movi $2, 33 ; number of lines
37 vbackporch:
38 deadi$t1, 96
39 movi $14, VB+HS+HB

40 deadi$t1, 48
41 movi $14, VB+HB
42 deadi$t1, 640
43 movi $14, VB
44 deadi$t1, 16
45 movi $14, VB+HB
46 addi $1, $1, 1
47 bne $1, $2, vbackporch
48
49 ; Generate lines of active video

50 movi $2, 0 ; reset line address
51 row:
52 movi $7, 0 ; reset line in char
53 line:
54 deadi$t1, 96 ; h. sync period
55 movi $14, HS+HB
56 ori $3, $7, FONT ; font base address
57
58 deadi$t1, 48 ; back porch period
59 movi $14, HB
60 deadi$t1, 640 ; active video period
61 mov $1, 0 ; column number
62
63 char:
64 lb $5, ($2+$1) ; load character
65 shli $5, $5, 4 ; *16 = lines/char
66 deadi$t0, 8 ; wait for next character
67 lb $14, ($5+$3) ; fetch and emit pixels
68 addi $1, $1, 1 ; next column
69 bne $1, $11, char
70
71 deadi$t1, 16 ; front porch period
72 movi $14, HB
73 addi $7, $7, 1 ; next row in char
74 bne $7, $13, line ; repeat until bottom
75 addi $2, $2, 80 ; next line
76 bne $2, $12, row ; until at end
77
78 j field

Fig. 3. Assembly code for the video controller. Code on the left handles synchronization
around the active text region. Code on lines 63–69 is the main display loop.

reloaded once every eight cycles, as dictated by the deadline in line 66. This
code uses six of these eight cycles; additional tricks, such as restructuring the
font in memory to eliminate the shli in line 65, could reduce this.

The line loop (lines 53–74) generates sixteen scan lines—one row of charac-
ters. It begins by generating a horizontal synchronization pulse: the deadline on
line 54 that effectively defines the length of the hsync pulse because the first
instruction following it (line 55) turns on the pulse and the instruction after the
next deadline—the movi of line 59—turns off the hsync signal.

The deadline in line 71 defines the time (16 cycles) of the front porch signal
(i.e., horizontal blanking) since just after the next deadline that will be executed
(either the beginning of the line loop in line 54 or in the vertical front porch
code—line 10) turns on horizontal synchronization.

This example illustrates two idioms for timer programming. In one, the dead-

line statements is placed at the beginning of a block that sets some signals.
The interaction between this deadline and the next makes the block run in the
prescribed number of cycles prescribed by the first deadline. For example, the
deadline in line 54 uses timer $t1 to make sure that the assertion and deassertion
of hsync occur exactly ninety-six clock cycles apart. Practically, the deadline in
line 54 sets the timer and the deadline in line 58 actually performs the delay.

Placing a deadline in a loop forces it to execute with the given period. The
deadline in line 66 does this to ensure that a new character is displayed every

1 movi $3, 0x0400 ; final bit mask (10 bits)
2 movi $5, 651 ; half bit time for 9600 baud
3 shli $6, $5, 1 ; calculate full bit time
4
5 wait for start:
6 bne $15, $0, wait for start
7 got start:
8 wait $t1, $5 ; sample at center of bit
9 movi $14, 0 ; clear received byte

10 movi $2, 1 ; received bit mask
11 movi $4, 0 ; clear parity
12 dead $t1, $6 ; skip start bit
13 receive bit:
14 dead $t1, $6 ; wait until center of next bit
15 mov $1, $15 ; sample
16 xor $4, $4, $1 ; update parity
17 and $1, $1, $2 ; mask the received bit
18 or $14, $14, $1 ; accumulate result
19 shli $2, $2, 1 ; advance to next bit
20 bne $2, $3, receive bit

21 check parity:
22 be $4, $0, detect baud rate
23 andi $14, $14, 0xff ; discard parity and stop bits
24 j wait for start
25
26 detect baud rate:
27 movi $6, 0 ; time of start bit
28 wait for start2:
29 bne $15, $0, wait for start2
30 wait for end of start:
31 mov $1, $15
32 addi $6, $6, 3 ; remember end of start bit
33 be $1, $0, wait for end of start
34 sri $5, $6, 1 ; calculate half bit time
35 j got start

Fig. 4. Assembly code for an asynchronous serial receiver. This reads 8-E-1-formatted
data and adjusts the baud rate on a parity error.

eight clock cycles. The loop starts with an lb (line 64) that fetches the character
from memory (register $2 holds the address of the leftmost character in the
line, and $1 holds the current column number). A shli (line 65) multiplies the
character number by sixteen to calculate its offset in the font since each character
in the font is sixteen bytes long to produce an 8×16 matrix. We should have
arranged the font so that the first line of each character was the first 256 bytes,
the next line the next 256, etc., to avoid this shift. The deadline in line 66
guarantees the lb in line 67 that fetches data from the font (the base address
for the current line in the character is in $3—it was calculated during horizontal
sync), is executed once every eight cycles, i.e., once every eight pixels—exactly
the length of the pixel shift register.

This example uses two timers: $t1 for the line (horizontal synchronization
and blanking), and $t0 for the characters. While a single timer would suffice,
using two allows line timing to be separated from character timing. For example,
it is possible to display only thirty-five characters across by changing the value
in $11, which is compared to the column in $1 at the bottom of the char loop.
This changes the execution time of the loop, but since it does not affect timer
$t1, the front porch will still come 640 cycles after the end of the back porch
because of the earlier deadline instruction.

The simplicity of writing software compared to hardware description lan-
guage was the main reason we undertook this work, and the video controller
bears this out: the assembly code for the video controller is only 78 lines. Its
behavior matches that of a 450-line VHDL implementation we wrote earlier.

5 An Asynchronous Serial Communication Receiver

We also coded and ran an asynchronous serial communication receiver (half
a UART) with auto baud-rate detection. Its real-time constraints are far less
stringent than the video controller, but it embodies a richer algorithm because
it works with different baud rates. In particular, it uses computed delays to
handle different baud rates.

We connected the serial input to register $15, which returns either all 0s or
all 1s depending on the serial input, and connected register $14 to a group of
LEDs that display the received character.

Figure 4 shows the code, which uses our processor’s ability to load timers
with non-constant values. The main loop (lines 5–24) waits for the falling edge
of a start bit (line 6), delays half a bit time (the contents of $5–line 8), then
samples each incoming bit (line 15) and accumulates the result in $14 (line 18).
We hold a mask indicating the bit being received in $2 and AND it with the
state of the serial port to determine which bit to accumulate in $14.

When a parity error occurs (the parity of the received byte is maintained
in $4), the code switches over to the detect baud rate routine (lines 26–35).
This also waits for a start bit (line 29), but then looks for the next rising
edge (line 33), which it assumes is the LSB of the byte being transmitted. The
wait for end of start routine calculates how long this takes—relying on the cycle-
level predictability of the processor—and uses it as the new whole-bit time. This
can be fooled by bytes whose LSBs are zero.

Although a somewhat unfair comparison, a comparable receiver unit of a
mini-UART coded in VHDL by Ovidiu Lupas (from opencores.org) is 154 lines
long; our receiver is only 35 and includes auto baud rate detection.

6 Conclusions

We presented a processor extension—instruction-accessible timers—that pro-
vides real-time programs with cycle-accurate timing. To validate our approach,
we implemented a simple MIPS-like processor that runs on a Xilinx Spartan-3
FPGA at 25 MHz and coded a text-mode video controller and a serial receiver
for it. In each case, the assembly-language description was about one quarter
the size of the equivalent VHDL, and vastly easier to develop and debug.

While not helpful for soft real-time tasks, our approach greatly simplifies
the development of controllers that previously could only be implemented in
hardware or through very careful assembly-level coding. Our contribution is to
increase the number of applications that can be coded in a software style, which
tends to be much more succinct and easier to get right.

We plan to make better use of the time a deadline instruction currently idles
the processor. Hardware support to run a best-effort thread during this time
is one approach. Thekkath and Eggers [17] discuss when this is wise choice for
general-purpose processors, but our aims are different. Running more threads
may lead to a hardware fixed-priority preemptive scheduler (Kohout et al. [4]).

We also plan to improve the quality of our processor. The MIPS-like archi-
tecture we chose was simple to implement but not the best for an FPGA.

We will provide higher-level language support, using C macros for timer
control. However, we plan to leave the user responsible for specifying the timing
constraints, rather than letting, say, the compiler infer them. A compiler able to
perform worst-case execution time analysis, however, would be very helpful.

References

1. Dean, A.G.: Compiling for concurrency: Planning and performing software thread
integration. In: Proc. Real-Time Systems Symposium, Austin, Texas (2002)

2. Dean, A.G.: Efficient real-time fine-grained concurrency on low-cost microcon-
trollers. IEEE Micro 24(4) (2004) 10–22

3. Welch, B.J., Kanaujia, S.O., Seetharam, A., Thirumalai, D., Dean, A.G.: Sup-
porting demanding hard-real-time systems with STI. IEEE Trans. on Computers
54(10) (2005) 1188–1202

4. Kohout, P., Ganesh, B., Jacob, B.: Hardware support for real-time operating sys-
tems. In: Proceedings of the First International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Newport Beach, California (2003)

5. Labrosse, J.: MicroC/OS-II. CMP Books, Lawrence, Kansas (1998)
6. Henzinger, T.A., Kirsch, C.M.: The embedded machine: Predictable, portable

real-time code. In: Proceedings of the ACM SIGPLAN Conference on Program
Language Design and Implementation (PLDI), Berlin, Germany (2002) 315–326

7. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science Comp. Programming 19(2) (1992) 87–152

8. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: A declarative lan-
guage for programming synchronous systems. In: Proceedings of the Symposium
on Principles of Programming Languages (POPL), Munich, Germany (1987)

9. Roop, P.S., Salcic, Z., Dayaratne, M.W.S.: Towards direct execution of Esterel
programs on reactive processors. In: Proceedings of the International Conference
on Embedded Software (Emsoft), Pisa, Italy (2004)

10. Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a
real-life processor. In: Proceedings of the International Conference on Embedded
Software (Emsoft). Volume 2211 of Lecture Notes in Computer Science., North
Lake Tahoe, California (2001) 469–485

11. Engblom, J.: Static properties of commercial embedded real-time programs, and
their implication for worst-case execution time analysis. In: Proc. Real-Time Tech-
nology and Applications Symposium (RTAS), Vancouver, Canada (1999)

12. Engblom, J.: On hardware and hardware models for embedded real-time systems.
In: Workshop on Real-Time Embedded Systems (WRTES), London, UK (2001)

13. Anantaraman, A., Seth, K., Rotenberg, E., Mueller, F.: Enforcing safety of real-
time schedules on contemporary processors using a virtual simple architecture
(VISA). In: Real-Time Systems Symposium (RTSS), Lisbon (2004) 114–125

14. Anantaraman, A., Seth, K., Rotenberg, E., Mueller, F.: Virtual simple architecture
(VISA): Exceeding the complexity limit in safe real-time systems. In: Proc. Intl.
Symp. Computer Architecture (ISCA), San Diego (2003) 350–361

15. Schoeberl, M.: Real-time scheduling on a Java processor. In: Proceedings of the
10th International Conference on Real-Time and Embedded Computing Systems
and Applications (RTCSA), Gothenburg, Sweden (2004)

16. Hardin, D.S.: Real-time objects on the bare metal: An efficient hardware realization
of the Java virtual machine. In: Proceedings of the Fourth International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC), Magdeburg,
Germany (2001) 53–59

17. Thekkath, R., Eggers, S.J.: The effectiveness of multiple hardware contexts. In:
ASPLOS-VI: Proceedings of the sixth international conference on Architectural
support for programming languages and operating systems. Volume 29 of ACM
SIGPLAN Notices., San Jose, California (1994) 328–337

