358 research outputs found

    In Memoriam: Dr. W. John Weilgart

    Get PDF
    Dr. W. John Weilgart, professor emeritus of psychology at Luther College died at age 67, Monday, January 26. He suffered from leukemia. Weilgart served on the Luther faculty from 1964-78. He previously taught at the University of Portland, Mills College, Xavier University, Notre Dame, and California Lutheran College

    Simulation and analysis of in vitro DNA evolution

    Full text link
    We study theoretically the in vitro evolution of a DNA sequence by binding to a transcription factor. Using a simple model of protein-DNA binding and available binding constants for the Mnt protein, we perform large-scale, realistic simulations of evolution starting from a single DNA sequence. We identify different parameter regimes characterized by distinct evolutionary behaviors. For each regime we find analytical estimates which agree well with simulation results. For small population sizes, the DNA evolutional path is a random walk on a smooth landscape. While for large population sizes, the evolution dynamics can be well described by a mean-field theory. We also study how the details of the DNA-protein interaction affect the evolution.Comment: 11 pages, 11 figures. Submitted to PNA

    Tropical climate–vegetation–fire relationships: multivariate evaluation of the land surface model JSBACH

    Get PDF
    The interactions between climate, vegetation and fire can strongly influence the future trajectories of vegetation in Earth system models. We evaluate the relationships between tropical climate, vegetation and fire in the global vegetation model JSBACH, using a simple fire scheme and the complex fire model SPITFIRE with the aim to identify potential for model improvement. We use two remote-sensing products (based on MODIS and Landsat) in different resolutions to assess the robustness of the obtained observed relationships. We evaluate the model using a multivariate comparison that allows us to focus on the interactions between climate, vegetation and fire and test the influence of land use change on the modelled patterns. Climate–vegetation–fire relationships are known to differ between continents; we therefore perform the analysis for each continent separately.The observed relationships are similar in the two satellite data sets, but maximum tree cover is reached at higher precipitation values for coarser resolution. This shows that the spatial scale of models and data needs to be consistent for meaningful comparisons. The model captures the broad spatial patterns with regional differences, which are partly due to the climate forcing derived from an Earth system model. Compared to the simple fire scheme, SPITFIRE strongly improves the spatial pattern of burned area and the distribution of burned area along increasing precipitation. The correlation between precipitation and tree cover is higher in the observations than in the largely climate-driven vegetation model, with both fire models. The multivariate comparison identifies excessive tree cover in low-precipitation areas and a too-strong relationship between high fire occurrence and low tree cover for the complex fire model. We therefore suggest that drought effects on tree cover and the impact of burned area on tree cover or the adaptation of trees to fire can be improved.The observed variation in the relationship between precipitation and maximum tree cover between continents is higher than the simulated one. Land use contributes to the intercontinental differences in fire regimes with SPITFIRE and strongly overprints the modelled multimodality of tree cover with SPITFIRE.The multivariate model–data comparison used here has several advantages: it improves the attribution of model–data mismatches to model processes, it reduces the impact of biases in the meteorological forcing on the evaluation and it allows us to evaluate not only a specific target variable but also the interactions.</p

    Dime como educas y te diré como es tu ambiente

    Get PDF
    La crisis ambiental es un problema de conocimiento, por ello involucra a la educación, siendo el desafío de ella el de pasar de una cultura economicista, que refuerza y que es reforzada por la globalización, a una cultura de pertenencia, de compromiso, de resistencia, de solidaridad. Debemos focalizar los esfuerzos por construir desde la complejidad ambiental una ciencia para la sustentabilidad que hunda sus raíces en la justicia ambiental y que destierre las ideas simplificadoras y reduccionistas de la sociedad y comience a fundar el nuevo paradigma basado en la interdisciplinaridad y la transdisciplinariedad. Este proyecto didáctico se elabora para aplicar en dos cursos "paralelos" de diferentes escuelas de la ciudad de Rafaela, provincia de Santa Fe. Se formarán equipos de trabajo que interactuarán en esta propuesta: docentes (biología, historia, derecho, lengua, geografía, economía), directivos y los alumnos, con las adaptaciones a sus problemáticas, su universo y territorialidad, implementando ILS-indicadores locales de sustentabilidad.Trabajos del área Ciencias NaturalesDepartamento de Ciencias Exactas y Naturale

    Scaling in the time-dependent failure of a fiber bundle with local load sharing

    Full text link
    We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)(Tft)ξr(t)\propto (T_f-t)^{-\xi}, where TfT_f is the lifetime of the bundle, and ξ1.0\xi \approx 1.0 is a quite universal scaling exponent. The average lifetime of the bundle scales with the system size as NδN^{-\delta}, where δ\delta depends on the distribution of individual fiber as well as the breakdown rule.Comment: 5 pages, 4 eps figures; to appear in Phys. Rev.

    Burst avalanches in solvable models of fibrous materials

    Full text link
    We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, and the distribution D(Δ)D(\Delta) of the magnitude Δ\Delta of such avalanches is the central characteristics in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and contrasted: the global model in which the load carried by a bursting fiber is equally distributed among the surviving members, and the local model in which the nearest surviving neighbors take up the load. For the global model we investigate in particular the conditions on the threshold distribution which would lead to anomalous behavior, i.e. deviations from the asymptotics D(Δ)Δ5/2D(\Delta) \sim \Delta^{-5/2}, known to be the generic behavior. For the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.Comment: 28 pages, RevTeX, 3 Postscript figure

    Gravastar Solutions with Continuous Pressures and Equation of State

    Full text link
    We study the gravitational vacuum star (gravastar) configuration as proposed by other authors in a model where the interior de Sitter spacetime segment is continuously extended to the exterior Schwarzschild spacetime. The multilayered structure in previous papers is replaced by a continuous stress-energy tensor at the price of introducing anisotropy in the (fluid) model of the gravastar. Either with an ansatz for the equation of state connecting the radial prp_r and tangential ptp_t pressure or with a calculated equation of state with non-homogeneous energy/fluid density, solutions are obtained which in all aspects satisfy the conditions expected for an anisotropic gravastar. Certain energy conditions have been shown to be obeyed and a polytropic equation of state has been derived. Stability of the solution with respect to possible axial perturbation is shown to hold.Comment: 19 pages, 9 figures. Latest version contains new and updated references along with some clarifying remarks in the stability analysi
    corecore