58 research outputs found

    Magnetic record associated with tree ring density: Possible climate proxy

    Get PDF
    A magnetic signature of tree rings was tested as a potential paleo-climatic indicator. We examined wood from sequoia tree, located in Mountain Home State Forest, California, whose tree ring record spans over the period 600 – 1700 A.D. We measured low and high-field magnetic susceptibility, the natural remanent magnetization (NRM), saturation isothermal remanent magnetization (SIRM), and stability against thermal and alternating field (AF) demagnetization. Magnetic investigation of the 200 mm long sequoia material suggests that magnetic efficiency of natural remanence may be a sensitive paleoclimate indicator because it is substantially higher (in average >1%) during the Medieval Warm Epoch (700–1300 A.D.) than during the Little Ice Age (1300–1850 A.D.) where it is <1%. Diamagnetic behavior has been noted to be prevalent in regions with higher tree ring density. The mineralogical nature of the remanence carrier was not directly detected but maghemite is suggested due to low coercivity and absence of Verwey transition. Tree ring density, along with the wood's magnetic remanence efficiency, records the Little Ice Age (LIA) well documented in Europe. Such a record suggests that the European LIA was a global phenomenon. Magnetic analysis of the thermal stability reveals the blocking temperatures near 200 degree C. This phenomenon suggests that the remanent component in this tree may be thermal in origin and was controlled by local thermal condition

    Development and Operation of the Microshutter Array System

    Get PDF
    The microshutter array (MSA) is a key component in the James Webb Space Telescope Near Infrared Spectrometer (NIRSpec) instrument. The James Webb Space Telescope is the next generation of a space-borne astronomy platform that is scheduled to be launched in 2013. However, in order to effectively operate the array and meet the severe operational requirements associated with a space flight mission has placed enormous constraints on the microshutter array subsystem. This paper will present an overview and description of the entire microshutter subsystem including the microshutter array, the hybridized array assembly, the integrated CMOS electronics, mechanical mounting module and the test methodology and performance of the fully assembled microshutter subsystem. The NIRSpec is a European Space Agency (ESA) instrument requiring four fully assembled microshutter arrays, or quads, which are independently addressed to allow for the imaging of selected celestial objects onto the two 4 mega pixel IR detectors. Each microshutter array must have no more than approx.8 shutters which are failed in the open mode (depending on how many are failed closed) out of the 62,415 (365x171) total number of shutters per array. The driving science requirement is to be able to select up to 100 objects at a time to be spectrally imaged at the focal plane. The spectrum is dispersed in the direction of the 171 shutters so if there is an unwanted open shutter in that row the light from an object passing through that failed open shutter will corrupt the spectrum from the intended object

    The Effects of Small Metal Additions (Co,Cu,Ga,Mn,Al,Bi,Sn) on the Magnetocaloric Properties of the Gd5Ge2Si2 Alloy

    Get PDF
    The structural and magnetic properties of arc-melted and homogenized (1300 °C, 1 h) alloys of Gd5Ge1.9Si2X0.1 (X = Cu, Co, Ga, Mn, Al, Bi, or Sn) were investigated by powder x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and magnetometry. The addition of Cu, Ga, Mn, and Al completely eliminated the large hysteresis losses present in the undoped Gd5Ge2Si2 alloy between 270 and 330 K, broadened the magnetic entropy change ΔSm peak, and shifted its peak value from 275 to 305 K similar to that observed earlier for Gd5Ge1.9Si2Fe0.1. The addition of Bi or Sn had a negligible effect on either the alloy hysteresis losses or the characteristics of the ΔSm vs T peak. The microstructure of the alloy doped with Cu, Co, Ga, Mn, or Al consisted of a majority phase (depleted of silicon) and a minor intergranular phase (rich in silicon and of the corresponding metal additive). For Bi or Sn doping, the microstructure consisted of only the Gd5Ge2Si2 phase. Low temperature x-ray diffraction data on an Fe-doped sample showed the same spectra at 245 and 300 K, consistent with the majority phase possessing an orthorhombic structure. Refrigeration capacity calculations show that Gd5Ge1.9Si2X0.1 (X = Fe,Cu,Co,Ga,Mn, or Al) alloys are superior magnetic refrigerants compared to the undoped Gd5Ge2Si2 alloy

    Space weathering simulations through controlled growth of iron nanoparticles on olivine

    Get PDF
    Airless planetary bodies are directly exposed to space weathering. The main spectral effects of space weathering are darkening, reduction in intensity of silicate mineral absorption bands, and an increase in the spectral slope towards longer wavelengths (reddening). Production of nanophase metallic iron (npFe0) during space weathering plays major role in these spectral changes. A laboratory procedure for the controlled production of npFe0 in silicate mineral powders has been developed. The method is based on a two-step thermal treatment of low-iron olivine, first in ambient air and then in hydrogen atmosphere. Through this process, a series of olivine powder samples was prepared with varying amounts of npFe0 in the 7-20 nm size range. A logarithmic trend is observed between amount of npFe0 and darkening, reduction of 1 µm olivine absorption band, reddening, and 1 µm band width. Olivine with a population of physically larger npFe0 particles follows spectral trends similar to other samples, except for the reddening trend. This is interpreted as the larger, ~40-50 nm sized, npFe0 particles do not contribute to the spectral slope change as efficiently as the smaller npFe0 fraction. A linear trend is observed between the amount of npFe0 and 1 µm band center position, most likely caused by Fe2+ disassociation from olivine structure into npFe0 particles.Peer reviewe

    Hazardous explosive eruptions of a recharging multi-cyclic island arc caldera

    Get PDF
    Caldera-forming eruptions of silicic volcanic systems are among the most devastating events on Earth. By contrast, post-collapse volcanic activity initiating new caldera cycles is generally considered less hazardous. Formed after Santorini’s latest caldera-forming eruption of ~1600 bce, the Kameni Volcano in the southern Aegean Sea enables the eruptive evolution of a recharging multi-cyclic caldera to be reconstructed. Santorini’s eruptive record has been documented by onshore products and historical descriptions of mainly effusive eruptions dating back to 197 bce. Here we combine high-resolution seismic reflection data with cored lithologies from International Ocean Discovery Program Expedition 398 at four sites to determine the submarine architecture and volcanic history of intra-caldera deposits from Kameni. Our shore-crossing analysis reveals the deposits of a submarine explosive eruption that produced up to 3.1 km3 of pumice and ash, which we relate to a historical eruption in 726 ce. The estimated volcanic explosivity index of magnitude 5 exceeds previously considered worst-case eruptive scenarios for Santorini. Our finding that the Santorini caldera is capable of producing large explosive eruptions at an early stage in the caldera cycle implies an elevated hazard potential for the eastern Mediterranean region, and potentially for other recharging silicic calderas

    An Autonomous Lunar Geophysical Experiment Package (ALGEP) for future space missions

    Get PDF
    Geophysical observations will provide key information about the inner structure of the planets and satellites and understanding the internal structure is a strong constraint on the bulk composition and thermal evolution of these bodies. Thus, geophysical observations are a key to uncovering the origin and evolution of the Moon. In this article, we propose the development of an autonomous lunar geophysical experiment package, composed of a suite of instruments and a central station with standardized interface, which can be installed on various future lunar missions. By fixing the interface between instruments and the central station, it would be possible to easily configure an appropriate experiment package for different missions. We describe here a series of geophysical instruments that may be included as part of the geophysical package: a seismometer, a magnetometer, a heat flow probe, and a laser reflector. These instruments will provide mechanical, thermal, and geodetic parameters of the Moon that are strongly related to the internal structure. We discuss the functionality required for future geophysical observations of the Moon, including the development of the central station that will be used commonly by different payloads

    Identification of Magnetic Noise on Lunar Rocks (Case for 15445.277 Lunar Rock)

    No full text
    We were able to identify with magnetic data that lunar rock 15445.277 contains magnetic noise and did not record any magnetic field during its formation
    • …
    corecore