203 research outputs found

    Virtual Gastroenterology Fellowship Recruitment During COVID-19 and Its Implications for the Future

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background and Aims Amid the COVID-19 pandemic, medical education organizations endorsed a virtual recruitment format, representing a stark change from traditional in-person interviews. We aimed to identify the attitudes and perceptions of Gastroenterology Fellowship Program Directors (PDs) and applicants regarding the virtual interview experience and the role of virtual interviews (VI) in the future. Methods We designed separate surveys targeting PDs and applicants using the Qualtrics software. At the end of the interview season, we e-mailed both survey links to all PDs and requested that they forward the applicant survey to their interviewed candidates. Surveys were voluntary and anonymous. Descriptive statistics were used to analyze the data with results presented as percentages. Results A total of 29.7% of PDs completed the survey. Compared to traditional interviews, VI were viewed by 46.5% of PDs to be very suboptimal or suboptimal. Yet, 69.1% envisioned a role for VI in the future. A total of 14.2% of applicants completed the survey. Compared to traditional interviews, VI were viewed by 42.3% of applicants to be very suboptimal or suboptimal. However, 61.8% saw a future role for VI. While both applicants and PDs reported that establishing an interpersonal connection was a disadvantage with VI, applicants placed more emphasis on this need for connection (p = 0.001). Conclusion Overall, PDs and applicants report mixed views with regard to VI but anticipate that it may continue to have a future role. VI may augment future recruitment cycles with care taken to not disadvantage applicants, who rely heavily on the interview process to create personal connections with programs

    Dietary factors associated with metabolic syndrome in Brazilian adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic Syndrome (MS) is defined as the association of numerous factors that increase cardiovascular risk and diet is one of the main factors related to increase the MS in the population. This study aimed to evaluate the association of diet on the presence of MS in an adult population sample.</p> <p>Methodology</p> <p>305 adults were clinically screened to participate in a lifestyle modification program. Anthropometric assessments included waist circumference (WC), body fat and calculated BMI (kg/m<sup>2</sup>) and muscle-mass index (MMI kg/m<sup>2</sup>). Dietary intake was estimated by 24 h dietary recall. Fasting blood was used for biochemical analysis. MS was diagnosed using NCEP-ATPIII (2001) criteria with adaptation for glucose (≥ 100 mg/dL). Logistic regression (Odds ratio) was performed in order to determine the odds ratio for developing MS according to dietary intake.</p> <p>Results</p> <p>An adequate intake of fruits, OR = 0.52 (CI:0.28-0.98), and an intake of more than 8 different items in the diet (variety), OR = 0.31 (CI:0.12-0.79) showed to be a protective factor against a diagnosis of MS. Saturated fat intake greater than 10% of total caloric value represented a risk for MS diagnosis, OR = 2.0 (1.04-3.84).</p> <p>Conclusion</p> <p>Regarding the dietary aspect, a risk factor for MS was higher intake of saturated fat, and protective factors were high diet variety and adequate fruit intake.</p

    Universal DNA methylation age across mammalian tissues

    Get PDF
    Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals.Publisher PDFPeer reviewe

    TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice

    Get PDF
    Abstract\ud \ud Background\ud High fat diet (HFD) induces insulin resistance in various tissues, including the vasculature. HFD also increases plasma levels of TNF-α, a cytokine that contributes to insulin resistance and vascular dysfunction. Considering that the enzyme phosphatase and tension homologue (PTEN), whose expression is increased by TNF-α, reduces Akt signaling and, consequently, nitric oxide (NO) production, we hypothesized that PTEN contributes to TNF-α-mediated vascular resistance to insulin induced by HFD. Mechanisms underlying PTEN effects were determined.\ud \ud \ud Methods\ud Mesenteric vascular beds were isolated from C57Bl/6J and TNF-α KO mice submitted to control or HFD diet for 18 weeks to assess molecular mechanisms by which TNF-α and PTEN contribute to vascular dysfunction.\ud \ud \ud Results\ud Vasodilation in response to insulin was decreased in HFD-fed mice and in ex vivo control arteries incubated with TNF-α. TNF-α receptors deficiency and TNF-α blockade with infliximab abolished the effects of HFD and TNF-α on insulin-induced vasodilation. PTEN vascular expression (total and phosphorylated isoforms) was increased in HFD-fed mice. Treatment with a PTEN inhibitor improved insulin-induced vasodilation in HFD-fed mice. TNF-α receptor deletion restored PTEN expression/activity and Akt/eNOS/NO signaling in HFD-fed mice.\ud \ud \ud Conclusion\ud TNF-α induces vascular insulin resistance by mechanisms that involve positive modulation of PTEN and inhibition of Akt/eNOS/NO signaling. Our findings highlight TNF-α and PTEN as potential targets to limit insulin resistance and vascular complications associated with obesity-related conditions.This work was supported by grants from Fundação de Amparo à Pesquisa\ud do Estado de São Paulo (FAPESP 2013/08216-2-CRID), Coordenação de Aper‑\ud feiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de\ud Desenvolvimento Científico e Tecnológico (CNPq), Brazil

    Mechanistic Investigations of Palladium-Catalyzed Allylic Fluorination

    No full text
    A computational and experimental approach was employed to study the mechanism of the palladium(0)-catalyzed fluorination of allylic chlorides with AgF as fluoride source. Our findings indicate that an allylpalladium fluoride is a key intermediate necessary for the generation of both the nucleophile and electrophile. Evidence was also obtained to support a homobimetallic mechanism in which C–F bond formation occurs by nucleophilic attack of a neutral allylpalladium fluoride on a cationic allylpalladium electrophile (with fluoride as counterion). The high branched selectivity and unusual ligand effects observed in the regioselective fluorination are assessed in light of this mechanism and calculated transition states. These results may have important implications for the mechanism of other transition-metal-catalyzed fluorinations
    corecore