172 research outputs found

    Enhanced Photorefractivity in a Polymeric Composite Photosensitized with Carbon Nanotubes Grafted to a Photoconductive Polymer

    Get PDF
    We report on the photosensitization of photorefractive (PR) polymeric composites through the inclusion of multiwalled and singlewalled carbon nanotubes (CNTs), respectively, having poly(N -vinyl carbazole) (PVK) grafted to their surfaces. The PR nature of the holographic gratings was confirmed via the asymmetric exchange of energy in a two-beam-coupling (TBC) geometry, yielding TBC gain coefficients approaching 80 cm-1. In addition, in degenerate-four-wave- mixing experiments the prepared composites exhibited diffraction efficiencies as high as 60% and overmodulation voltages as low as ∼40 V/μm. These notable figures of merit indicate that the grafting of the PVK polymer to the various CNTs results in enhanced PR performance. The mechanism responsible for this enhancement in PR performance is investigated using a variety of experimental techniques

    The mealybug chromosome system I: unusual methylated bases and dinucleotides in DNA of a Planococcus species

    Get PDF
    The methylation status of the nuclear DNA from a mealybug, a Planococcus species, has been studied. Analysis of this DNA by High Performance Liquid Chromatography and Thin Layer Chromatography revealed the presence of significant amounts of 5--methylcytosine. Since analysis of DNA methylation using the Msp I/Hpa II system showed only minor differences in susceptibility of the DNA to the two enzymes, it seemed possible that 5-methylcytosine (5mC) occurred adjacent to other nucleotides in addition to its usual position, next to guanosine. This was verified by dinucleotide analysis of DNA labelledin vitro by nick translation. These data show that the total amount of 5-methylcytosine in this DNA is slightly over 2.3 mol %, of which 0.61% occurs as the dinucleotide 5mCpG, 0.68% as 5mCpA, 0.59% as 5mCpT and 0.45% as 5mCpC. 5mCpG represents approximately 3.3% of all CpG dinucleotides. The experimental procedure would not have permitted the detection of 5mCp5mC, if it occurs in this system. Unusually high amounts of 6-methyladenine (approximately 4 mol %) and 7-methylguanine (approximately 2 mol %) were also detected, 6-methyladenine and 7-methylguanine occurred adjacent to all four nucleotides. The total G+C content was 33.7% as calculated from dinucleotide data and 32.9% as determined from melting profiles

    Evaluating the RCCI operating range limits in a high compression ratio medium-duty diesel engine fueled with biodiesel and ethanol

    Full text link
    [EN] This work investigates the load limits of reactivity controlled compression ignition combustion, a dual-fuel concept which combines port fuel injection of low-reactivity fuels with direct injection of diesel fuel, in a medium-duty diesel engine. The experiments were conducted in a single-cylinder diesel engine derived from the multi-cylinder production engine. In this sense, the stock turbocharger and exhaust gas recirculation systems were replaced by an external compressor and dedicated low-pressure exhaust gas recirculation loop, respectively. Additionally, a port fuel injector was installed in the intake manifold to allow gasoline injection. First, this article presents some results highlighting the effect of the exhaust gas recirculation rate, gasoline fraction, diesel start of injection, diesel injection strategy and intake temperature on the emissions, performance and combustion development in a representative operating condition: 1200r/min and 6.5bar indicated mean effective pressure (25% load). Later, with the aim of showing the reactivity controlled compression ignition potential, the best results in terms of performance and emissions at 25% load are compared against the multi-cylinder diesel engine from 950 to 2200r/min. Reactivity controlled compression ignition engine tests were developed taking into account limitations in nitrogen oxides (NOx) and soot emissions, in-cylinder pressure and maximum pressure rise rate. Finally, keeping the same constraints for testing, the load limits of reactivity controlled compression ignition concept are evaluated for all the engine speeds. Results suggest that reactivity controlled compression ignition allows fulfilling EURO VI limits for NOx and soot emissions without using selective catalytic reduction and diesel particulate filter aftertreatment systems at 25% load at all the engines speeds, providing better indicated efficiency than conventional diesel operation in most operating points. In addition, the maximum engine load that ensured the aforementioned constraints was around 35% for all the engine speeds, with a maximum indicated mean effective pressure of 8.8bar at 2200r/min. In this case, a strong reduction in carbon monoxide (CO) and unburned hydrocarbon (HC) emissions compared to the cases of 25% load was achieved at all the engine speeds.Benajes, J.; García Martínez, A.; Monsalve-Serrano, J.; Balloul, I.; Pradel, G. (2017). Evaluating the RCCI operating range limits in a high compression ratio medium-duty diesel engine fueled with biodiesel and ethanol. International Journal of Engine Research. 18(1-2):66-80. https://doi.org/10.1177/1468087416678500S6680181-2Yao, M., Zheng, Z., & Liu, H. (2009). Progress and recent trends in homogeneous charge compression ignition (HCCI) engines. Progress in Energy and Combustion Science, 35(5), 398-437. doi:10.1016/j.pecs.2009.05.001Maurya, R. K., & Agarwal, A. K. (2011). Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine. Applied Energy, 88(4), 1169-1180. doi:10.1016/j.apenergy.2010.09.015Cerit, M., & Soyhan, H. S. (2013). Thermal analysis of a combustion chamber surrounded by deposits in an HCCI engine. Applied Thermal Engineering, 50(1), 81-88. doi:10.1016/j.applthermaleng.2012.06.004Singh, A. P., & Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy, 99, 116-125. doi:10.1016/j.apenergy.2012.03.060Maurya, R. K., & Agarwal, A. K. (2011). Experimental investigation on the effect of intake air temperature and air–fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters. Applied Energy, 88(4), 1153-1163. doi:10.1016/j.apenergy.2010.09.027Liu, H., Yao, M., Zhang, B., & Zheng, Z. (2008). Effects of Inlet Pressure and Octane Numbers on Combustion and Emissions of a Homogeneous Charge Compression Ignition (HCCI) Engine. Energy & Fuels, 22(4), 2207-2215. doi:10.1021/ef800197bBenajes, J., García, A., Domenech, V., & Durrett, R. (2013). An investigation of partially premixed compression ignition combustion using gasoline and spark assistance. Applied Thermal Engineering, 52(2), 468-477. doi:10.1016/j.applthermaleng.2012.12.025Benajes, J., Tormos, B., Garcia, A., & Monsalve-Serrano, J. (2014). Impact of Spark Assistance and Multiple Injections on Gasoline PPC Light Load. SAE International Journal of Engines, 7(4), 1875-1887. doi:10.4271/2014-01-2669Pastor, J. V., García-Oliver, J. M., García, A., Micó, C., & Durrett, R. (2013). A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion. Applied Energy, 104, 568-575. doi:10.1016/j.apenergy.2012.11.030Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Conceptual model description of the double injection strategy applied to the gasoline partially premixed compression ignition combustion concept with spark assistance. Applied Energy, 129, 1-9. doi:10.1016/j.apenergy.2014.04.093Benajes, J., Molina, S., García, A., Monsalve-Serrano, J., & Durrett, R. (2014). Performance and engine-out emissions evaluation of the double injection strategy applied to the gasoline partially premixed compression ignition spark assisted combustion concept. Applied Energy, 134, 90-101. doi:10.1016/j.apenergy.2014.08.008Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2009). Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending. SAE International Journal of Engines, 2(2), 24-39. doi:10.4271/2009-01-2647Klos, D., Janecek, D., & Kokjohn, S. (2015). Investigation of the Combustion Instability-NOx Tradeoff in a Dual Fuel Reactivity Controlled Compression Ignition (RCCI) Engine. SAE International Journal of Engines, 8(2), 821-830. doi:10.4271/2015-01-0841Kokjohn, S. L., Musculus, M. P. B., & Reitz, R. D. (2015). Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling. Combustion and Flame, 162(6), 2729-2742. doi:10.1016/j.combustflame.2015.04.009Kokjohn, S., Reitz, R. D., Splitter, D., & Musculus, M. (2012). Investigation of Fuel Reactivity Stratification for Controlling PCI Heat-Release Rates Using High-Speed Chemiluminescence Imaging and Fuel Tracer Fluorescence. SAE International Journal of Engines, 5(2), 248-269. doi:10.4271/2012-01-0375Kokjohn, S. L., Hanson, R. M., Splitter, D. A., & Reitz, R. D. (2011). Fuel reactivity controlled compression ignition (RCCI): a pathway to controlled high-efficiency clean combustion. International Journal of Engine Research, 12(3), 209-226. doi:10.1177/1468087411401548Desantes, J. M., Benajes, J., García, A., & Monsalve-Serrano, J. (2014). The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency. Energy, 78, 854-868. doi:10.1016/j.energy.2014.10.080Dempsey, A. B., Walker, N. R., & Reitz, R. D. (2013). Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel. SAE International Journal of Engines, 6(1), 78-100. doi:10.4271/2013-01-0264Benajes, J., García, A., Pastor, J. M., & Monsalve-Serrano, J. (2016). Effects of piston bowl geometry on Reactivity Controlled Compression Ignition heat transfer and combustion losses at different engine loads. Energy, 98, 64-77. doi:10.1016/j.energy.2016.01.014Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). An experimental investigation on the influence of piston bowl geometry on RCCI performance and emissions in a heavy-duty engine. Energy Conversion and Management, 103, 1019-1030. doi:10.1016/j.enconman.2015.07.047Pearson, R. J., & Turner, J. W. G. (2014). The role of alternative and renewable liquid fuels in environmentally sustainable transport. Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, 19-51. doi:10.1533/9780857097422.1.19Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine. Energy, 90, 1261-1271. doi:10.1016/j.energy.2015.06.088Benajes, J., Molina, S., García, A., & Monsalve-Serrano, J. (2015). Effects of direct injection timing and blending ratio on RCCI combustion with different low reactivity fuels. Energy Conversion and Management, 99, 193-209. doi:10.1016/j.enconman.2015.04.046Benajes, J., Pastor, J. V., García, A., & Monsalve-Serrano, J. (2015). The potential of RCCI concept to meet EURO VI NOx limitation and ultra-low soot emissions in a heavy-duty engine over the whole engine map. Fuel, 159, 952-961. doi:10.1016/j.fuel.2015.07.064Payri, R., Climent, H., Salvador, F. J., & Favennec, A. G. (2004). Diesel Injection System Modelling. Methodology and Application for a First-generation Common Rail System. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(1), 81-91. doi:10.1243/095440704322829191Payri, R., Salvador, F. J., Martí-Aldaraví, P., & Martínez-López, J. (2012). Using one-dimensional modeling to analyse the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Detailed injection system model. Energy Conversion and Management, 54(1), 90-99. doi:10.1016/j.enconman.2011.10.004Payri, R., García, A., Domenech, V., Durrett, R., & Plazas, A. H. (2012). An experimental study of gasoline effects on injection rate, momentum flux and spray characteristics using a common rail diesel injection system. Fuel, 97, 390-399. doi:10.1016/j.fuel.2011.11.065Desantes, J. M., Payri, R., Pastor, J. M., & Gimeno, J. (2005). EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART I: NONEVAPORATIVE CONDITIONS. Atomization and Sprays, 15(5), 489-516. doi:10.1615/atomizspr.v15.i5.20Desantes, J. M., Pastor, J. V., Payri, R., & Pastor, J. M. (2005). EXPERIMENTAL CHARACTERIZATION OF INTERNAL NOZZLE FLOW AND DIESEL SPRAY BEHAVIOR. PART II: EVAPORATIVE CONDITIONS. Atomization and Sprays, 15(5), 517-544. doi:10.1615/atomizspr.v15.i5.30Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665Ma, S., Zheng, Z., Liu, H., Zhang, Q., & Yao, M. (2013). Experimental investigation of the effects of diesel injection strategy on gasoline/diesel dual-fuel combustion. Applied Energy, 109, 202-212. doi:10.1016/j.apenergy.2013.04.01

    Chemical Kinetic Insights into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures

    Get PDF
    Gasoline octane number is a significant empirical parameter for the optimization and development of internal combustion engines capable of resisting knock. Although extensive databases and blending rules to estimate the octane numbers of mixtures have been developed and the effects of molecular structure on autoignition properties are somewhat understood, a comprehensive theoretical chemistry-based foundation for blending effects of fuels on engine operations is still to be developed. In this study, we present models that correlate the research octane number (RON) and motor octane number (MON) with simulated homogeneous gas-phase ignition delay times of stoichiometric fuel/air mixtures. These correlations attempt to bridge the gap between the fundamental autoignition behavior of the fuel (e.g., its chemistry and how reactivity changes with temperature and pressure) and engine properties such as its knocking behavior in a cooperative fuels research (CFR) engine. The study encompasses a total of 79 hydrocarbon gasoline surrogate mixtures including 11 primary reference fuels (PRF), 43 toluene primary reference fuels (TPRF), and 19 multicomponent (MC) surrogate mixtures. In addition to TPRF mixture components of iso-octane/n-heptane/toluene, MC mixtures, including n-heptane, iso-octane, toluene, 1-hexene, and 1,2,4-trimethylbenzene, were blended and tested to mimic real gasoline sensitivity. ASTM testing protocols D-2699 and D-2700 were used to measure the RON and MON of the MC mixtures in a CFR engine, while the PRF and TPRF mixtures' octane ratings were obtained from the literature. The mixtures cover a RON range of 0-100, with the majority being in the 70-100 range. A parametric simulation study across a temperature range of 650-950 K and pressure range of 15-50 bar was carried out in a constant-volume homogeneous batch reactor to calculate chemical kinetic ignition delay times. Regression tools were utilized to find the conditions at which RON and MON best correlate with simulated ignition delay times. Furthermore, temperature and pressure dependences were investigated for fuels with varying octane sensitivity. This analysis led to the formulation of correlations useful to the definition of surrogates for modeling purposes and allowed one to identify conditions for a more in-depth understanding of the chemical phenomena controlling the antiknock behavior of the fuels

    Development of a Diesel Surrogate Fuel Library

    Full text link
    [EN] Diesel fuel is composed of a complex mixture of hundreds of hydrocarbons that vary globally depending on crude oil sources, refining processes, legislative requirements and other factors. In order to simplify the study of this fuel, researchers create surrogate fuels to mimic the physical and chemical properties of Diesel fuels. This work employed the commercial software Reaction Workbench - Surrogate Blend Optimizer (SBO) to develop a Surrogate Fuel Library containing 18 fuels. Within the fuel library, the cetane number ranges from 35 to 60 (in increments of 5) at threshold soot index (TSI) levels representative of low, baseline and high sooting tendency fuels (TSI = 17, 31 and 48, respectively). The Surrogate Fuel Library provides the component blend ratios and predicted properties for cetane number, threshold soot index, lower heating value, density, kinematic viscosity, molar hydrogen-to-carbon ratio and distillation curve temperatures from T-10 to T-90. A market petroleum Diesel fuel with a cetane number of 50 and a threshold soot index of 31 was selected as the Baseline Diesel Fuel. The combustion, physical and chemical properties of the Baseline Diesel Fuel were precisely matched by the Baseline Surrogate Fuel. To validate the SBO predicted fuel properties, a set of five surrogate fuels, deviating in cetane number and threshold soot index, were blended and examined with ASTM tests. Good agreement was obtained between the SBO predicted and ASTM measured fuel properties. To further validate the Surrogate Fuel Library, key properties that were effected by altering the component blend ratios to control cetane number and TSI were compared to a set of five market Diesel fuels with good results. These properties included density, viscosity, energy density and the T-10 and T-90 distillation temperatures. The Surrogate Fuel Library provided by this work supplies Diesel engine researchers and designers the ability to analytically and experimentally vary fuel cetane number and threshold soot index with fully-representative surrogate fuels. This new capability to independently vary cetane number and threshold soot index provides a means to further enhance the understanding of Diesel combustion and design future combustion systems that improve efficiency and emissions.Szymkowicz, P.; Benajes, J. (2018). Development of a Diesel Surrogate Fuel Library. Fuel. 222:21-34. https://doi.org/10.1016/j.fuel.2018.01.112S213422

    Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals

    Get PDF
    The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N2 plasma jets from a micro nozzle array. Treatment with air or N2 plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS), which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N2 plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer

    Disinfection of Ocular Cells and Tissues by Atmospheric-Pressure Cold Plasma

    Get PDF
    Background: Low temperature plasmas have been proposed in medicine as agents for tissue disinfection and have received increasing attention due to the frequency of bacterial resistance to antibiotics. This study explored whether atmospheric-pressure cold plasma (APCP) generated by a new portable device that ionizes a flow of helium gas can inactivate ocular pathogens without causing significant tissue damage. Methodology and Principal Findings: We tested the APCP effects on cultured Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, Aspergillus fumigatus and Herpes simplex virus-1, ocular cells (conjunctival fibroblasts and keratocytes) and ex-vivo corneas. Exposure to APCP for 0.5 to 5 minutes significantly reduced microbial viability (colony-forming units) but not human cell viability (MTT assay, FACS and Tunel analysis) or the number of HSV-1 plaque-forming units. Increased levels of intracellular reactive oxygen species (ROS) in exposed microorganisms and cells were found using a FACS-activated 2',7'-dichlorofluorescein diacetate probe. Immunoassays demonstrated no induction of thymine dimers in cell cultures and corneal tissues. A transient increased expression of 8-OHdG, genes and proteins related to oxidative stress (OGG1, GPX, NFE2L2) was determined in ocular cells and corneas by HPLC, qRT-PCR and Western blot analysis. Conclusions: A short application of APCP appears to be an efficient and rapid ocular disinfectant for bacteria and fungi without significant damage on ocular cells and tissues, although the treatment of conjunctival fibroblasts and keratocytes caused a time-restricted generation of intracellular ROS and oxidative stress-related responses

    Bacterial Inactivation of Wound Infection in a Human Skin Model by Liquid-Phase Discharge Plasma

    Get PDF
    Background: We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid. Principal Findings: We observed statistically significant 3.83-log10 (p,0.001) and 1.59-log10 (p,0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed. Conclusions: These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds

    Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA

    Get PDF
    Recently, biological roles of extracellular vesicles (which include among others exosomes, microvesicles and apoptotic bodies) have attracted substantial attention in various fields of biomedicine. Here we investigated the impact of sustained exposure of cells to the fluoroquinolone antibiotic ciprofloxacin on the released extracellular vesicles. Ciprofloxacin is widely used in humans against bacterial infections as well as in cell cultures against Mycoplasma contamination. However, ciprofloxacin is an inducer of oxidative stress and mitochondrial dysfunction of mammalian cells. Unexpectedly, here we found that ciprofloxacin induced the release of both DNA (mitochondrial and chromosomal sequences) and DNA-binding proteins on the exofacial surfaces of small extracellular vesicles referred to in this paper as exosomes. Furthermore, a label-free optical biosensor analysis revealed DNA-dependent binding of exosomes to fibronectin. DNA release on the surface of exosomes was not affected any further by cellular activation or apoptosis induction. Our results reveal for the first time that prolonged low-dose ciprofloxacin exposure leads to the release of DNA associated with the external surface of exosomes
    • …
    corecore