12,092 research outputs found

    Grassland Landscape Design: Working with Land-Managers

    Get PDF
    We are entering an era of landscape design in order to simultaneously tackle largescale issues such as salinity and rising water tables, whole-farm profitability and the maintenance or enhancement of rural communities. In Australia, an important element of landscape design will be the reintroduction or broadening of the base of perennial grasses within farm systems. The goal of this project was to accelerate awareness and adoption of perennial grasses in a large but ecologically-specific area, namely the already-cleared steep uplands in the high rainfall recharge areas of the Murray-Darling Basin. We used a participatory model, in which land-managers made monthly observations of grassland composition and condition, and of livestock. This paper describes the project, some of the outcomes eg that stocking rate varied more within grassland types than between types, and could be relatively high, eg 10 adult sheep equivalents per hectare on indigenous grasslands. Land-managers\u27 data eg height, were coupled to correlations with other variates such as dry matter and leaf area, to derive seasonal estimates of digestible dry matter-on-offer, and environmentally-important variates such as seasonal evaporation. Collection of these data by land-managers creates opportunities for local awareness and the development of regional data sets which are not possible through traditional small-plot research. In our view, land-manager participation, leading to awareness and in some cases enthusiasm, will be a prerequisite for regional landscape design

    On the Persistent Shape and Coherence of Pulsating Auroral Patches

    Get PDF
    The pulsating aurora covers a broad range of fluctuating shapes that are poorly characterized. The purpose of this paper is therefore to provide objective and quantitative measures of the extent to which pulsating auroral patches maintain their shape, drift and fluctuate in a coherent fashion. We present results from a careful analysis of pulsating auroral patches using all-sky cameras. We have identified four well-defined individual patches that we follow in the patch frame of reference. In this way we avoid the space-time ambiguity which complicates rocket and satellite measurements. We find that the shape of the patches is remarkably persistent with 85-100% of the patch being repeated for 4.5-8.5 min. Each of the three largest patches has a temporal correlation with a negative dependence on distance, and thus does not fluctuate in a coherent fashion. A time-delayed response within the patches indicates that the so-called streaming mode might explain the incoherency. The patches appear to drift differently from the SuperDARN-determined E→\stackrel{\rightarrow}{E} X B→\stackrel{\rightarrow}{B} convection velocity. However, in a nonrotating reference frame the patches drift with 230-287 m/s in a north eastward direction, which is what typically could be expected for the convection return flow

    Chaos in an Exact Relativistic 3-body Self-Gravitating System

    Get PDF
    We consider the problem of three body motion for a relativistic one-dimensional self-gravitating system. After describing the canonical decomposition of the action, we find an exact expression for the 3-body Hamiltonian, implicitly determined in terms of the four coordinate and momentum degrees of freedom in the system. Non-relativistically these degrees of freedom can be rewritten in terms of a single particle moving in a two-dimensional hexagonal well. We find the exact relativistic generalization of this potential, along with its post-Newtonian approximation. We then specialize to the equal mass case and numerically solve the equations of motion that follow from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining orbits in both the hexagonal and 3-body representations of the system, and plot the Poincare sections as a function of the relativistic energy parameter η\eta . We find two broad categories of periodic and quasi-periodic motions that we refer to as the annulus and pretzel patterns, as well as a set of chaotic motions that appear in the region of phase-space between these two types. Despite the high degree of non-linearity in the relativistic system, we find that the the global structure of its phase space remains qualitatively the same as its non-relativisitic counterpart for all values of η\eta that we could study. However the relativistic system has a weaker symmetry and so its Poincare section develops an asymmetric distortion that increases with increasing η\eta . For the post-Newtonian system we find that it experiences a KAM breakdown for η≃0.26\eta \simeq 0.26: above which the near integrable regions degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon reques

    Exact Black Hole and Cosmological Solutions in a Two-Dimensional Dilaton-Spectator Theory of Gravity

    Get PDF
    Exact black hole and cosmological solutions are obtained for a special two-dimensional dilaton-spectator (ϕ−ψ\phi-\psi) theory of gravity. We show how in this context any desired spacetime behaviour can be determined by an appropriate choice of a dilaton potential function V(ϕ)V(\phi) and a ``coupling function'' l(ϕ)l(\phi) in the action. We illustrate several black hole solutions as examples. In particular, asymptotically flat double- and multiple- horizon black hole solutions are obtained. One solution bears an interesting resemblance to the 2D2D string-theoretic black hole and contains the same thermodynamic properties; another resembles the 4D4D Reissner-Nordstrom solution. We find two characteristic features of all the black hole solutions. First the coupling constants in l(ϕ)l(\phi) must be set equal to constants of integration (typically the mass). Second, the spectator field ψ\psi and its derivative ψâ€Č\psi^{'} both diverge at any event horizon. A test particle with ``spectator charge" ({\it i.e.} one coupled either to ψ\psi or ψâ€Č\psi^{'}), will therefore encounter an infinite tidal force at the horizon or an ``infinite potential barrier'' located outside the horizon respectively. We also compute the Hawking temperature and entropy for our solutions. In 2D2D FRWFRW cosmology, two non-singular solutions which resemble two exact solutions in 4D4D string-motivated cosmology are obtained. In addition, we construct a singular model which describes the 4D4D standard non-inflationary big bang cosmology (big−bang→radiation→dustbig-bang\rightarrow radiation\rightarrow dust). Motivated by the similaritiesbetween 2D2D and 4D4D gravitational field equations in FRWFRW cosmology, we briefly discuss a special 4D4D dilaton-spectator action constructed from the bosonic part of the low energy heterotic string action andComment: 34 pgs. Plain Tex, revised version contains some clarifying comments concerning the relationship between the constants of integration and the coupling constants

    On the Relative Strength of Electric and Magnetic ULF Wave Radial Diffusion During the March 2015 Geomagnetic Storm

    Get PDF
    In this paper, we study electron radial diffusion coefficients derived from Pc4‐Pc5 ultralow frequency (ULF) wave power during the intense geomagnetic storm on 17–18 March 2015. During this storm the population of highly relativistic electrons was depleted within 2 hr of the storm commencement. This radial diffusion, depending upon the availability of source populations, can cause outward radial diffusion of particles and their loss to the magnetosheath, or inward transport and acceleration. Analysis of electromagnetic field measurements from Geostationary Operational Environment Satellite (GOES), Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite, and ground‐based magnetometers shows that the main phase storm‐specific radial diffusion coefficients do not correspond to statistical estimates. Specifically, during the main phase, the electric diffusion ( urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0001) is reduced, and the magnetic diffusion ( urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0002) is increased, compared to empirical models based on Kp. Contrary to prior results, the main phase magnetic radial diffusion cannot be neglected. The largest discrepancies, and periods of dominance of urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0003 over urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0004, occur during intervals of strongly southward IMF. However, during storm recovery, both magnetic and electric diffusion rates are consistent with empirical estimates. We further verify observationally, for the first time, an energy coherence for both urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0005 and urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0006 where diffusion coefficients do not depend on energy. We show that, at least for this storm, properly characterizing main phase radial diffusion, potentially associated with enhanced ULF wave magnetopause shadowing losses, cannot be done with standard empirical models. Modifications, associated especially with southward IMF, which enhance the effects of urn:x-wiley:jgra:media:jgra54863:jgra54863-math-0007 and introduce larger main phase outward transport losses, are needed

    Gravitational theory without the cosmological constant problem, symmetries of space-filling branes and higher dimensions

    Get PDF
    We showed that the principle of nongravitating vacuum energy, when formulated in the first order formalism, solves the cosmological constant problem. The most appealing formulation of the theory displays a local symmetry associated with the arbitrariness of the measure of integration. This can be motivated by thinking of this theory as a direct coupling of physical degrees of freedom with a "space - filling brane" and in this case such local symmetry is related to space-filling brane gauge invariance. The model is formulated in the first order formalism using the metric and the connection as independent dynamical variables. An additional symmetry (Einstein - Kaufman symmetry) allows to eliminate the torsion which appears due to the introduction of the new measure of integration. The most successful model that implements these ideas is realized in a six or higher dimensional space-time. The compactification of extra dimensions into a sphere gives the possibility of generating scalar masses and potentials, gauge fields and fermionic masses. It turns out that remaining four dimensional space-time must have effective zero cosmological constant.Comment: 26 page

    First-principles dynamical CPA to finite-temperature magnetism of transition metals

    Full text link
    We present here the first-principles dynamical CPA (coherent potential approximation) combined with the tight-binding LMTO LDA+U method towards quantitative calculations of the electronic structure and magnetism at finite temperatures in transition metals and compounds. The theory takes into account the single-site dynamical charge and spin fluctuations using the functional integral technique as well as an effective medium. Numerical results for Fe, Co, and Ni show that the theory explains quantitatively the high-temperature properties such as the effective Bohr magneton numbers and the excitation spectra in the paramagnetic state, and describes the Curie temperatures semiquantitatively.Comment: ICM'09 Proceeding

    Resonances, and mechanisms of Theta-production

    Full text link
    After explaining necessity of exotic hadrons, we discuss mechanisms which could determine production of the exotic Theta-baryon. A possible important role of resonances (producing the Theta in real or virtual decays) is emphasized for various processes. Several experimental directions for studies of such resonances, and the Theta itself, are suggested. We briefly discuss also recent negative results on the Theta-baryon.Comment: 6 page
    • 

    corecore