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Model Predictive Control of Nonholonomic Mobile
Robots without Stabilizing Constraints and Costs*
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Abstract—The problem of steering a nonholonomic mobile

robot to a desired position and orientation is considered. In this

paper, a model predictive control (MPC) scheme based on tailored

non-quadratic stage cost is proposed to fulfil this control task.

We rigorously prove asymptotic stability while neither stabilizing

constraints nor costs are used. To this end, we first design suitable

manoeuvres to construct bounds on the value function. Second,

these bounds are exploited to determine a prediction horizon

length such that asymptotic stability of the MPC closed-loop

is guaranteed. Finally, numerical simulations are conducted to

explain the necessity of having non-quadratic running costs.

Index Terms—nonholonomic robots, model predictive control,

asymptotic stability, prediction horizon, non-quadratic costs.

I. INTRODUCTION

Unmanned ground vehicles (UGVs) have attracted consid-
erable interest in the recent decades due to their wide range
of applicability, cf. [1] or [2] for a thorough review. Nonholo-
nomic differential-drive models, such as unicycle models, are
commonly used to describe kinematics of UGVs. Typically, the
control objective is to drive the robot between two static poses,
which can be identified as set-point regulation (stabilization),
cf. [3]. For this problem, Brockett’s condition [4] implies that
neither the linearized model is stabilizable nor a smooth time-
invariant feedback control law exists – a typical characteristic
of nonholonomic systems, see also [5]. Nonetheless, various
solution strategies like piecewise-continuous feedback control
or smooth time-varying control have been reported, see the
overview paper [6]. Further control approaches based on
differential kinematic control [7], backstepping [8], and vector
field orientation feedback [9] have also been proposed. How-
ever, these control strategies ignore natural input saturation
limits and, thus, require a post processing step in order to scale
the calculated control signals to their physical bounds, cf. [9]
for details. In addition, determining suitable tuning parameters
in order to achieve an acceptable performance remains a
challenging task, cf. [10]. In contrast, several successful case
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studies using model predictive control (MPC) were conducted,
see, e.g. [11], [6], [12], [3], [13].

MPC is considered to be one of the most attractive control
strategies due to its applicability to constrained nonlinear
multiple input multiple output (MIMO) systems. In MPC, a
sequence of control inputs minimizing an objective function
is computed over a finite prediction horizon; then, the first
element of this (optimal) control sequence is applied to the
plant. This process is repeated every sampling instant, see,
e.g. [14] for further details. Since only finite horizon problems
are solved in each MPC step, closed-loop stability may not
hold, cf. [15]. Nonetheless, stability can be ensured, e.g. by
imposing terminal constraints, cf. [16], [17], or by using
bounds on the value function in order to determine a stabilizing
prediction horizon length, see, e.g. [18], [19], [20].

For regulation of nonholonomic robots, stabilizing MPC
using terminal region constraints and costs has been pursued
in [6] while a contraction constraint on the first state in the
prediction horizon was used in [3]. Moreover, in [11] a non-
quadratic terminal cost was constructed on a terminal region
for car-like nonholonomic robots. Here, the desired set point
was located at the boundary of the closed terminal region,
see also [21] for a robust version. MPC without stabilizing
constraints but with terminal costs has been first studied
for nonholonomic systems in [22]. For the regulation of
differential drive robots, MPC without stabilizing constraints is
particularly attractive since computing (possibly time varying)
terminal regions for large feasible sets can be an extremely
challenging task, cf. [23]. This is especially true if the results
shall be generalized to multi robot systems or domains with
obstacles.

In this work, a stability analysis of MPC schemes without
stabilizing constraints or costs for regulation of nonholo-
nomic mobile robots is performed. Herein, a methodology
is proposed, which allows to determine a prediction horizon
length such that asymptotic stability of the MPC closed-loop
is guaranteed. To this end, a proof of concept for verifying
the controllability assumption introduced in [19] is presented.
Herein, the running costs are tailored to the design specifi-
cation of controlling both the position and the orientation.
Then, the less conservative technique of [24], [20], [25], [26]
is applied in order to rigorously prove asymptotic stability.

While the construction of particular open-loop manoeuvres
used to derive the growth condition of [19] heavily relies on
the kinematic unicycle model, the pursued approach is outlined
such that it can be used as a framework for verifying the above
mentioned controllability assumption and, thus, being able to
conclude asymptotic stability of the MPC closed-loop also
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for other systems. In particular, the insight provided by our
analysis yields guidelines for the design of MPC controllers
also for more accurate models of differential drive robots – a
topic for future research. An extension of our discrete time
results to the continuous time domain based on the presented
results can be found in [27].

Finally, we numerically demonstrate that the canonical
choice of quadratic running costs is not suited for regulation
of nonholonomic mobile robots without (stabilizing) terminal
constraints and/or costs. Moreover, the effectiveness of our
approach is shown by means of numerical simulations.

This paper is organized as follows: Section II outlines the
regulation problem of nonholonomic mobile robots as well as
the MPC algorithm. The stability results presented in [20], [26]
are revisited in Section III. In Section IV, bounds on the value
function are derived by constructing appropriate feasible open-
loop trajectories. Based on these bounds, a suitable prediction
horizon length can be determined such that the MPC closed-
loop is asymptotically stable. Our findings are illustrated by
numerical simulations in Section V. Finally, conclusions are
drawn in Section VI.

Notation: R and N denote real and natural numbers,
respectively. N0 := N [ {0} represents the non-negative
integers and R�0 the non-negative real numbers. A continuous
function ⌘ : R�0 ! R�0 is said to be of class K if it
is zero at zero and strictly monotonically increasing. If it
is, in addition, unbounded it is called a class K1-function.
A function � : R�0 ⇥ N0 ! R�0 is said to be of class
KL if �(·, n) 2 K1 for all n 2 N0 and �(r, ·) is strictly
monotonically decaying to zero for each r > 0.

II. PROBLEM SETUP

In this section, a differential drive mobile robot is described
by an ordinary differential equation. Then, a corresponding
discrete time model is presented and a model predictive control
scheme is proposed in order to asymptotically stabilize the
robot.

A. Nonholonomic mobile robot
The kinematic model of the mobile robot is given by
0
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with an analytic vector field f : R3 ⇥R2 ! R3. The first two
(spacial) components of the state z = (x, y, ✓)T (m,m,rad)
represent the position in the plane while the angle ✓ corre-
sponds to the orientation of the robot. The control input is
u = (v, w)T (m/s,rad/s), where v and w are the linear and the
angular speeds of the robot, respectively. Assuming piecewise
constant control inputs on each interval [iT, (i+1)T ), i 2 N0,
with sampling period T (seconds), the (exact) discrete time
dynamics fe,T : R3 ⇥ R2 ! R3 are given by
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for w 6= 0. When the robot moves in a straight line (angular
speed w = 0) the right hand side of (2) becomes

z + lim
w!0
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The movement is restricted to a rectangle which is modelled
by the box constraints
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The control inputs are limited by
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with vmin < 0 < vmax and wmin < 0 < wmax. Then,
admissibility of a sequence of input signals can be defined
as follows.

Definition 1. Let Z := [xmin, xmax]⇥ [ymin, ymax]⇥R ⇢ R3

and U := [vmin, vmax] ⇥ [wmin, wmax] ⇢ R2 be given. Then,
for a given state z0 2 Z, a sequence of control values u =
(u(0), u(1), . . . , u(N � 1)) 2 UN of length N 2 N is called
admissible, denoted by u 2 UN (z0), if the state trajectory

zu(·; z0) = (zu(0; z0), zu(1; z0), . . . , zu(N ; z0))

iteratively generated by system dynamics (2) and zu(0; z0) =
z0 satisfies zu(k; z0) 2 Z for all k 2 {0, 1, . . . , N}. An infinite
sequence of control values u = (u(k))k2N0 ⇢ U is said to
be admissible for z0 2 Z, denoted by u 2 U1(z0), if the
truncation to its first N elements is contained in UN (z0) for
all N 2 N.

B. Model Predictive Control

The goal is to steer the mobile robot to a desired (feasible)
state z? 2 Z, which is without loss of generality chosen to
be the origin, i.e. z? = 0R3 .1 Indeed, z? is a (controlled)
equilibrium since fe,T (z?, 0) = z?. More precisely, our goal
is to find a static state feedback law µ : Z ! U such that,
for each z0 2 Z, the resulting closed-loop system zµ(·; z0)
generated by

zµ(k + 1; z0) = fe,T (zµ(k; z0), µ(zµ(k; z0)))

and zµ(0; z0) = z0, satisfies the constraints zµ(k; z0) 2 Z and
µ(zµ(k; z0)) 2 U for all k 2 N0 and is asymptotically stable,
i.e. there exists a KL-function � : R�0 ⇥ N0 ! R�0 such
that, for each z0 2 Z, the closed-loop trajectory obeys the
inequality

kzµ(k; z0)k  �(kz0k, k) 8 k 2 N0.

As briefly discussed in the introduction, several control
techniques have been developed for this purpose. In this paper
we use MPC, which makes use of the system dynamics in
order to design a control strategy minimizing a cost function.
This cost function sums up given stage costs along predicted

1z? is supposed to be in the interior of the state constraint set Z.
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(feasible) trajectories. We propose to deploy the running
(stage) costs ` : Z ⇥ U ! R�0 defined as

`(z, u) = q1x
4 + q2y

2 + q3✓
4 + r1v

4 + r2w
4 (5)

with q1, q2, q3, r1, r2 2 R>0. In (5), small deviations in the y-
direction are penalized more than deviations with respect to x
or ✓. The motivation behind this particular choice becomes
clear in Subsection IV-B where the different order of y
is exploited in order to verify Assumption 1 and, thus, to
ensure asymptotic stability. Moreover, in Subsection V-B, we
explain why quadratic running costs `(z, u) = zTQz+uTRu,
Q 2 R3⇥3 and R 2 R2⇥2, are not suited for our example by
conducting numerical simulations.

Based on the introduced running costs, a cost function JN :
Z⇥UN ! R�0 and a corresponding (optimal) value function
VN : Z ! R�0 [ {1} are defined as

JN (z0, u) :=
N�1X

n=0

`(zu(n), u(n)) and

VN (z0) := inf
u2UN (z0)

JN (z0, u)

for N 2 N[ {1}, where VN (z0) = 1 if UN (z0) = ; holds.
Algorithm 1, which is an MPC scheme without stabilizing
constraints or costs, is employed in order to solve this task.
For a detailed discussion on MPC we refer to [23], [14].

Algorithm 1 MPC
Initialization: set prediction horizon N and time index k := 0.

1: Measure the current state ẑ := z(k).
2: Compute u? = (u?(0), u?(1), . . . , u?(N � 1)) 2 UN (ẑ)

satisfying JN (ẑ, u?) = VN (ẑ).
3: Define the MPC feedback law µN : Z ! U at ẑ by

µN (ẑ) := u?(0) and implement u(k) := µN (ẑ) at the
plant. Then, increment the time index k and goto step 1.

Since 0R2 2 U holds, UN (fe,T (ẑ, µN (ẑ))) 6= ; holds, i.e.
recursive feasibility of the MPC closed-loop is ensured. Exis-
tence of an admissible sequence of control values minimizing
JN (ẑ, ·) can be infered from compactness of the nonempty
domain and continuity of the cost function by applying the
Weierstrass theorem, cf. [28] for details. However, since nei-
ther stabilizing constraints nor terminal costs are incorporated
in our MPC formulation, asymptotic stability is far from being
trivial and does, in general, not hold, see, e.g. [15]. In the
following, we will show how to ensure asymptotic stability
by appropriately choosing the MPC prediction horizon N .

III. STABILITY OF MPC WITHOUT STABILIZING
CONSTRAINTS OR COSTS

In this section, known results from [20], [25] are recalled.
Later, these results are exploited in order to rigorously prove
asymptotic stability of the exact discrete time model of the
mobile robot governed by (2). The following assumption,
introduced in [19], is a key ingredient in order to show
asymptotic stability of the MPC closed-loop.

Assumption 1. Let a monotonically increasing and bounded
sequence (�i)i2N be given and suppose that, for each z0 2 Z,
the estimate

Vi(z0)  �i · inf
u2U1(z0)

`(z0, u) =: �i · `?(z0) 8 i 2 N. (6)

holds. Furthermore, let there exist two K1-functions ⌘, ⌘̄ :
R�0 ! R�0 satisfying

⌘(kz � z?k)  `?(z)  ⌘̄(kz � z?k) 8 z 2 Z. (7)

Based on Assumption 1 and the fact that recursive feasibility
trivially holds for our example, as observed in the preceding
section, asymptotic stability of the MPC closed-loop can be
established, cf. [20, Theorems 4.2 and 5.3] and [26].

Theorem 2. Let Assumption 1 hold and let the performance
index ↵N be given by the formula

↵N := 1�
(�N � 1)

QN
k=2(�k � 1)

QN
k=2 �k �

QN
k=2(�k � 1)

. (8)

Then, if ↵N > 0, the relaxed Lyapunov inequality

VN (fe,T (z, µN (z)))  VN (z)� ↵N `(z, µN (z)) (9)

holds for all z 2 Z and the MPC closed-loop with prediction
horizon N is asymptotically stable.

While Condition (7) holds trivially for the chosen running
costs, the derivation of the growth bounds �i, i 2 N0, of
Condition (6), is, in general, difficult. One option to derive �i,
is the following proposition.

Proposition 3. Let a sequence (cn)n2N0 ✓ R�0, be given
and assume that

P1
n=0 cn < 1 holds. In addition, suppose

that for each z0 2 Z an admissible sequence of control values
uz0 = (uz0(n))n2N0 2 U1(z0) exists such that the inequality

`(zuz0
(n; z0), uz0(n))  cn · `?(z0) 8 n 2 N0 (10)

holds. Then, the growth bounds �i, i 2 N0, of Condition (6)
are given by �i =

Pi�1
n=0 cn, i 2 N0.

Proof: Let z0 2 Z and uz0 2 U1(z0) be given such
that Inequality (10) holds. Then, the definition of the value
function Vi yields

Vi(z0)
i�1X

n=0

`(zuz0
(n; z0), uz0(n))

i�1X

n=0

cn`
?(z0) = �i`

?(z0).

While monotonicity of the sequence (�i)i2N results from
cn � 0, n 2 N0, boundedness follows from the assumed
summability of the sequence (cn)n2N0 .

In order to illustrate these results, a simple example taken
from [29] is presented for which Condition (10) is deduced.

Example 4. The system dynamics are given by x+ = x + u
with state and control constraints X = [�1, 1]2 and U =
[�ū, ū]2 for some ū > 0, respectively. The desired equilibrium
x? is supposed to be contained in X . The running costs are
`(x, u) = kx� x?k2 + �kuk2 with weighting factor � � 0.
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Let c := maxx2X kx� x?k, i.e. the maximal distance of a
feasible point from the desired state x?. We define inductively
a control ux0 2 UN (x0) for some design parameter ⇢ 2 (0, 1)

u(k) = (x? � xux0
(k;x0)) with  = min{ū/c, ⇢}.

The choice of  implies u(k) 2 U for xux0
(k;x0) 2 X . Since

xux0
(k + 1;x0) = xux0

(k;x0) + (x? � xux0
(k;x0)) holds,

we obtain

kxux0
(k + 1;x0)� x?k = (1� )kxux0

(k;x0)� x?k

and due to convexity of X and  2 (0, 1), feasibility of the
state trajectory (xux0

(k;x0))k2N0 is ensured. Then, Condi-
tion (10) can be deduced by

`(xux0
(k), ux0(k)) = kxux0

(k)� x?k2 + �kux0(k)k2

= (1 + �2)kxux0
(k)� x?k2

= (1 + �2)(1� )2k kxux0
(0)� x?k2

| {z }
=`?(x0)

with xux0
(k) = xux0

(k;x0), i.e. Condition (10) with cn =
C�n where the parameters C = 1 + �2 and � = (1 � )2

are used. Hence, an exponential decay is shown which implies
the summability of the sequence (cn)n2N0 .

Based on the sequence (cn)n2N0 computed in Example 4,
Formula (8) yields ↵2 = 1� (C+�C�1)2. Hence, ↵2 > 0 is
equivalent to showing C(1+�) = (1+�2)(1+(1�)2) < 2.
Supposing � 2 (0, 1), the left hand side of this inequality is
strictly smaller than (1 + 2)(1 + (1 � )2) and, thus the
inequality

(1� ) + (1� )2 � �3(1� )

implies ↵2 > 0. Hence, Theorem 2 can be used to conclude
asymptotic stability for prediction horizon N = 2. For,
e.g. � = 0.1 and ⇢ = 0.5, the performance index ↵2 is
approximately 0.9209.

Remark 5. A direct verification of Assumption 1 yields, in
general, less conservative bounds on the required prediction
horizon in order to ensure that ↵N 2 (0, 1] is satisfied.
However, Proposition 3 is instructive for the construction in
the subsequent section.

IV. STABILITY ANALYSIS OF THE UNICYCLE MOBILE
ROBOT

In this section, a bounded sequence (�i)i2N�2
is constructed

such that Assumption 1 holds. For this purpose, first an open
set N1 = N1(s) of initial conditions depending on a parameter
s 2 [0,1) is defined by
8
<

:z =

0

@
x
y
✓

1

A 2 R3 : z 2 Z and `?

0

@

0

@
x
y
0

1

A

1

A < s

9
=
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Based on this definition, the feasible set Z is split up into
N1 and N2 := Z\N1 such that Z = N1 [ N2 holds. Then,
bounded sequences (�

Nj

i )i2N�2
, j 2 {1, 2}, are derived such

that
Vi(z0)  �

Nj

i · `?(z0) 8 z0 2 Nj (12)

holds for all i 2 N. In conclusion, taking into account that
the input sequence (u(k))k2N0 , u(k) = 0R2 , is admissible on
the infinite horizon and implies Inequality (6) with �i = i,
Inequality (6) holds for all z0 2 Z with

�i := min{i,max{�N1
i , �N2

i }}, i 2 N�2. (13)

The motivation behind partitioning the set Z is that we
design two different manoeuvres in order to deduce bounded
sequences (�

Nj

i )i2N�2
, j 2 {1, 2}. While in principle one

strategy could be sufficient, one of the proposed manoeuvres
works for initial states close to the origin (inside the set N1)
while the other becomes more advantageous outside N1. In
this vein, the vehicle is just turned towards the origin 0 2 R2

and, then, drives in that direction before the angle is set to zero
if z0 2 N2. However, that move does not allow to derive a
bounded �i-sequence for initial positions z0 = (0, y0, 0) whose
distance `?(z0) tends to zero. But, boundedness is essential in
order to deduce asymptotic stability of the MPC closed-loop
via Theorem 2.

Before we present the (technical) details in following Sub-
sections IV-A and IV-B, let us briefly explain the strategy
used to construct (�

Nj

i )i2N�2
, j 2 {1, 2}. First, for initial

values z0 = (x0, y0, 0)T 2 Nj , a family of particular control
sequences uz0 := (u(k; z0))k2N0 2 U1(z0) is proposed such
that the robot is steered to the origin in a finite number of
steps. These input sequences uz0 yield (suboptimal) running
costs `(zuz0

(k; z0), u(k; z0)) such that, by definition of op-
timality, the following quotients can be estimated uniformly
with respect to z0 = (x0, y0, 0)T 2 Nj by

`(zuz0
(k; z0), u(k; z0)) · `?(z0)�1  ck 8 k 2 N0 (14)

with coefficients ck = c
Nj

k , k 2 N0, i.e. a coefficient
sequence (ck)k2N0 such that Inequality (10) holds. Since also
the number of steps needed in order to steer the considered
initial states z0 to the origin exhibits a uniform upper bound,
there exists k̄ such that ck = 0 holds for all k � k̄. Then,
the coefficients c1, c2, . . . , ck̄�1 are rearranged in a descending
order denoted by (c̄k)k2N0 with c̄0 = c0, which still implies
Condition (6) with �i :=

Pi�1
n=0 c̄n. Finally, these �i-sequences

are used in order to ensure Condition (6) for all initial
states contained in Nj , i.e. also those with ✓0 6= 0. Due to
symmetries (the robot can go back and forth), it is sufficient
to consider initial positions with (x0, y0)T � 0R2 .

A. Trajectory Generation for z0 2 N2

In this section we first consider initial conditions inside N2

with ✓0 = 0. Subsequently, we will prove that the derived
bounds also hold for the case ✓0 6= 0.

Initial Conditions z0 2 N2 with ✓0 = 0: For initial
conditions z0 = (x0, y0, 0)T in the set N2, the following
simple manoeuvre can be employed:

a) choose an angle ✓̄ 2 [�⇡,⇡) such that the vehicle
points towards (or in the opposite direction to) the
origin (0, 0)T 2 R2,

b) drive directly towards the origin,
c) turn the vehicle to the desired angle ✓? = 0.
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The number of steps needed in order to carry out this ma-
noeuvre depends on the constraints and the sampling time T
which is supposed to satisfy i ·T = 1 for some integer i 2 N.
We define the minimal number of steps required to turn the
vehicle by 90 degrees as

k?T :=

⇠
⇡/2

min{�wmin, wmax,⇡/2} · T

⇡

assuming reasonable bounds control constraints. We define
also the minimal number of steps required to drive the
vehicle from the farthest corner of the box defined by the
constraints (3) to the origin as

l?T :=

&p
max{�ymin, ymax}2 +max{�xmin, xmax}2

min{�vmin, vmax} · T

'
,

respectively. Additionally, the inequality

r2  q3 · T
2

(15)

is assumed to hold in order to avoid technical difficulties
resulting from not reflecting the sampling time T in the
running costs.

Initial values z0 = (x0, y0, 0)T � 0 are considered first.
Let the angle arctan(y0/x0) 2 [0,⇡/2) be denoted by �. The
vehicle stays at the initial position without moving for k?T
steps, i.e (vi, wi)T = (0, 0)T , i 2 {0, 1, . . . , k?T � 1}, which
yields Inequality (14) with cN2

i = 1, i = 0, 1, . . . , k?T �1. This
artificially added phase is introduced here in order to facilitate
the treatment of initial positions with ✓0 6= 0.

Next, the vehicle turns k?T steps such that ✓u(2k?T ; z0) = �
holds by applying the input u(k?T+i) = (0,�·(k?TT )�1)T 2 U
for all i 2 {0, 1, . . . , k?T � 1}. This control action yields the
running costs `(zu(k?T + i; z0), u(k?T + i)) given by

q1x
4
0 + q2y

2
0 + q3

✓
i�

k?T

◆4

+ r2

✓
�

k?TT

◆4

. (16)

Since � 2 [0,⇡/2), `?(z0) � s, and Assumption (15) hold,
Inequality (14) is ensured with the coefficients

cN2
k?
T+i := 1 +

q3⇡4

16k?T
4 · s

✓
i4 +

1

2T 3

◆
, (17)

i = 0, 1, . . . , k?T � 1. Then, the vehicle drives towards the
origin in l?T steps with constant backward speed u(2k?T + i) =
(�k(x0, y0)T k·(l?TT )�1, 0)T 2 U , i 2 {0, 1, . . . , l?T �1}. This
leads to running costs `(zu(2k?T + i; z0), u(2k?T + i)) given by
✓
l?T � i

l?T

◆2"
q1

✓
l?T � i

l?T

◆2
x4
0 + q2y

2
0

#
+q3�

4+r1

✓
k(x0, y0)k

l?TT

◆4

Since �  ⇡/2 and the control effort is smaller than
min{�vmin, vmax}, the respective coefficients for Inequal-
ity (14) can be chosen as

cN2
2k?

T+i :=

✓
l?T � i

l?T

◆2

+
q3(⇡/2)4 + r1 min{�vmin, vmax}4

s
(18)

for i 2 {0, 1, . . . , l?T �1}. Finally, the vehicle turns k?T steps in
order to reach ✓u(3k?T + l?T ; z0) = 0 using the input u(2k?T +

x

y

0x

0y
I

Case 1 
Case 2 
Case 3 
Case 4 

Fig. 1. Classification of the four different cases for z0 2 N2 with ✓0 6= 0.

l?T + i) = (0,�� · (k?TT )�1)T , i 2 {0, 1, . . . , k?T � 1}. Thus,
the running costs `(zu(2k?T + l?T + i; z0), u(2k?T + l?T + i)) are

"
q3

✓
k?T � i

k?T

◆4

+ r2

✓
1

k?TT

◆4
#
�4. (19)

Then, invoking (15) ensures Inequality (14) with

cN2
2k?

T+l?T+i :=
q3⇡4

16k?T
4 · s


(k?T � i)4 +

1

2T 3

�
(20)

for i 2 {0, 1, . . . , k?T � 1}. The calculated coefficients cN2
i ,

i = 1, 2, . . . , 3k?T + l?T � 1, are ordered descendingly resulting
in a new sequence (c̄N2

i )
3k?

T+l?T�1
i=1 , satisfying c̄N2

i  c̄N2
i�1 for

i 2 {2, 3, . . . , 3k?T + l?T � 1}. Then, setting c̄N2
0 = cN2

0 and
c̄N2
i = 0 for all i � 3k?T + l?T yields (c̄N2

i )1i=0. Hence, the
accumulated bounds (�N2

i )i2N�2
of Condition (6) for the first

manoeuvre are given by

�N2
i :=

i�1X

n=0

c̄N2
i , i 2 N�2. (21)

Initial Conditions z0 2 N2 with ✓0 6= 0: In this
subsection, we show that Condition (6) holds for arbitrary
initial conditions z0 2 N2, i.e. ✓0 2 [�⇡, 0) [ (0,⇡), using
the bounds defined in (21). To this end, we distinguish four
intervals in dependence of the initial angular deviation ✓0,
see Figure 1. While the basic ingredients are similar to the
described manoeuvre for ✓0 = 0, the order of the involved
motions differs as summarized in Figure 2 in order to facilitate
the accountability of the upcoming presentation.

Case 1: let ✓0 be contained in the interval (0,�). The
robot stays at the initial position without moving for k?T steps;
thus, Inequality (14) holds with the coefficients ci = 1, i =
0, 1, . . . , k?T � 1. Then, the control input u(k?T ) = (0, wk?

T
)T ,

wk?
T
2 (0,� · (k?TT )�1] is adjusted such that

9! i? 2 {1, . . . , k?T � 1} : ✓0 + Twk?
T
= ✓k?

T+i?

where ✓k?
T+i? is one of the achieved angles during the ma-

noeuvre for ✓0 = 0. Then, the robot turns k?T � i? steps
such that ✓u(2k?T � i? + 1) = � is achieved using the input
u(k?T +i) = (0,�·(k?TT )�1)T , i 2 {1, 2, . . . , k?T �i?}. Hence,
Inequality (14) is valid with the coefficient cN2

k?
T+i+(i?�1),

i 2 {0, 1, . . . , k?T � i?}. The remaining parts of the manoeuvre
are performed as for ✓0 = 0. Since we have `?(z0) > s but
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✓0 = 0

0 k?T 2k?T 2k?T+l?T 3k?T+l?T

wait turn move turn
| | | | |

Case 1
0 k?T 2k?T�i?+1 3k?T+l?T�i?+1

wait turn move turn
| | | | |

Case 2

Case 3 0 2k?T 2k?T+l?T 3k?T+l?T

turn move turn
| | | |

Case 4
0 k?T k?T+l?T 3k?T+l?T

turn move turn
| | | |

Fig. 2. The manoeuvre for initial conditions z0 2 N2 consists of waiting,
turning, and moving the differential drive robot. However, the order of these
motions depends on the initial angular deviation, see Figure 1.

precisely the same running costs, the growth bounds given by
(21) can be used to ensure condition (6) for the considered
case.

Case 2: let ✓0 2 (�,⇡] hold. The first part of the ma-
noeuvre is performed by turning the robot 2k?T steps, such
that ✓u(2k?T ; z0) = � is achieved using the input u(i) =
(0,��✓ ·(k?TT )�1)T , i = 0, 1, . . . , 2k?T �1, �✓ = (✓0��)/2.
Hence the running costs `(zu(i; z0), u(i)) are given by

q1x
4
0 + q2y

2
0 + q3


✓0 � i

✓
�✓

k?T

◆�4
+ r2

✓
�✓

k?TT

◆4

. (22)

for i 2 {0, 1, . . . , 2k?T � 1}. Then, using �✓ > 0 and Taylor
series expansion theory yields


✓0 � i

✓
�✓

k?T

◆�4
 ✓40 � i

✓
�✓

k?T

◆
✓30

and, thus, invoking Assumption (15), i.e. r2  q3·T
2 , leads to

`(zu(i; z0), u(i))  `?(z0)� q3

✓
�✓

k?T

◆"
i✓30 �

1

2

✓
�✓

k?TT

◆3
#

(23)

for i = 0, 1, . . . , 2k?T � 1. In conclusion, the right hand side
of this inequality is always less than or equal to `?(z0) for
i > 0. Hence, Inequality (14) holds with

cN2
k?
T
, cN2

0 , cN2
1 , . . . , cN2

k?
T�1, c

N2
k?
T+1, . . . , c

N2
2k?

T�1

for i = 0, 1, 2, . . . , 2k?T � 1. In particular, the construction of
the sequence (c̄N2

i )1i=0 yields cN2
k?
T
+ cN2

0  c̄N2
0 + c̄N2

1 = �N2
2 .

Finally, the remaining parts of the manoeuvre can be dealt with
analogously to case 1 showing that Condition (6) is ensured
with the accumulated bounds defined by (21).

Case 3: let ✓0 2 (�⇡,�⇡ + �) hold. First, the robot is
turned k?T steps such that ✓k?

T
= �⇡ + � holds using the

input u(i) = (0,�✓ · (k?TT )�1)T , i = 0, 1, . . . , k?T � 1, with
�✓ = |✓0| � ⇡ + �. The respective running costs are given
by (22), which also satisfy Inequality (23) with ✓0 replaced by
|✓0|. Like in Case 2, the inequality `(zu(i; z0), u(i))  `?(z0)
holds for i = 1, 2, . . . , k?T � 1. During the second part of the

manoeuvre the robot is driven to the origin in l?T steps; thus,
Inequality (14) holds with the coefficients defined by (18) —
indeed, q3(⇡/2)4 could have been dropped. Next, the robot is
turned k?T steps until ✓u(2k?T + l?T ; z0) = �⇡/2 holds using
u(k?T + l?T + i) = (0,�✓ · (k?TT )�1)T with �✓ = ⇡/2�� for
i 2 {0, 1, . . . , k?T � 1}. Hence, for i = 0, 1, . . . , k?T � 1, the
running costs `(zu(k?T + l?T + i; z0), u(k?T + l?T + i)) are

q3

✓
�� ⇡ +

i�✓

k?T

◆4

+ r2

✓
�✓

k?TT

◆4

.

A Taylor expansion of the first term yields
✓
(�� ⇡) +

i�✓

k?T

◆4

(�� ⇡)4 � i�✓

k?T
(⇡ � �)3.

Therefore, using Assumption (15), ⇡ � � � �✓ · (k?TT )�1,
and |✓0| � |�� ⇡|, one obtains the inequality

`(zu(k
?
T + l?T + i; z0), u(k

?
T + l?T + i))  q3✓

4
0  `?(z0)

for i = 1, 2, . . . , k?T � 1. Then, the robot turns another k?T
steps such that ✓u(3k?T + l?T ; z0) = 0 holds using the input
u(2k?T + l?T + i) = (0,⇡ · (2k?TT )�1)T , i 2 {0, 1, . . . , k?T �1}.
The resulting running costs for this part of the manoeuvre
are given by (19) with � = ⇡/2 and, thus, also satisfy In-
equality (14) with coefficients c2k?

T+l?T+i, i = 0, 1, . . . , k?T �1
defined by (20), respectively. We show that Case 3 is less
costly than the reference case ✓0 = 0 by the following
calculations, in which Assumption (15), i.e. r2  q3·T

2 , is
used:

`(zu(0; z0), u(0)) + `(zu(k
?
T + l?T ; z0), u(k

?
T + l?T ))

= `?(z0) + q3(⇡ � �)4 +
r2

(|✓0|�⇡
2 )

4(⇡
2 )

4

z }| {h
(|✓0|� ⇡ + �)4 + (

⇡

2
� �)4

i

(k?TT )
4

 `?(z0) + q3✓
4
0 +

q3⇡4T

32(k?TT )
4


✓
2 +

q3⇡4T

32(k?TT )
4 · s

◆
`?(z0) =

⇣
cN2
0 + cN2

k?
T

⌘
· `?(z0)

In conclusion, the accumulated bounds given by (21) can be
used to ensure Condition (6) for the case considered here.

Case 4: let ✓0 2 (�⇡ + �, 0) hold. First, for i =
0, 1, . . . , k?T � 1, the robot uses the control inputs u(i) =
(0,�✓ ·(k?TT )�1)T with �✓ defined as max{0,��⇡/2�✓0}
in order to achieve that ��✓u(k?T ; z0)  ⇡/2 holds. Then, the
robot employs u(k?T + i) = (0, (�� ✓u(k?T ; z0)) · (k?TT )�1)T

for all i 2 {0, 1, . . . , k?T � 1}, which yields ✓u(2k?T ; z0) = �.
Proceeding analogously to Case 2 leads to Estimate (23)

for all i{0, 1, . . . , k?T � 1} while the running costs `(zu(k?T +
i; z0), u(k?T + i)) for the next k?T steps are given by

q1x
4
0 + q2y

2
0 + q3

✓
✓k?

T
+

i(�� ✓k?
T
)

k?T

◆4

+ r2

✓
�� ✓k?

T

k?TT

◆4

with ✓k?
T
= ✓u(k?T ; z0) for all i 2 {0, 1, . . . , k?T �1}. Invoking

Assumption (15), i.e. r2  q3·T
2 , yields the bound

2`?(z0)+q3

"
✓4k?

T
� ✓40| {z }

��✓·|✓0|3

+
�✓

2k?T

✓
�✓

k?TT

◆3

| {z }
|✓0|3

+
�� ✓k?

T

2k?T

✓
�� ✓k?

T

k?TT

◆3#
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for the running costs `(zu(0; z0), u(0))+`(zu(k?T ; z0), u(k
?
T ))

and, thus, allows to derive the estimate

`(zu(0; z0), u(0)) + `(zu(k
?
T ; z0), u(k

?
T )) (24)


 
2 +

q3⇡4

32k?T
4T 3 · s

!
`?(z0) =

⇣
cN2
0 + cN2

k?
T

⌘
· `?(z0).

The running costs `(zu(i; z0), u(i)) can be estimated by
cN2
i `?(z0) for all i 2 {1, 2, . . . , k?T�1}[{k?T+1, . . . , 2k?T�1},

see Case 2 and the derivation of the coefficients (17) for details
while taking ✓u(k?T ; z0)+i(��✓k?

T
)/k?T  i�/k?T into account.

Since the remaining parts of the manoeuvre are performed
precisely as in Case 1, combining this with Inequality (24)
shows that the accumulated bounds given by (21) can be used
to ensure Condition (6) for the considered case.

B. Trajectory Generation for z0 2 N1

We consider initial conditions inside N1 with ✓0 = 0 and
construct a suitable coefficient sequence (cN1

n )n2N0 satisfying
Inequality (14). Here, the particular choice of the stage costs `
is heavily exploited in order to successfully steer the robot
from a position (0, y0, 0)T with y0 6= 0 to the origin while
simultaneously deriving finitely many bounds cN1

n , n 2 N0.
These bounds are on the one hand uniform in y0, i.e. Inequal-
ity (14) holds independently of y0 and, thus, also for y0 ! 0.
On the other hand, the number of coefficients cN1

n , which
are strictly greater than zero, is uniformly bounded. Combin-
ing these two properties ensures that the sequence remains
summable – an important ingredient to make Proposition 3
applicable in order to ensure Assumption 1. Subsequently,
we reorder this sequence in order to get (c̄N1

n )n2N0 and
prove that the resulting bounds �N1

i :=
Pi�1

n=0 c̄
N1
n also yield

Inequality (12) for the case ✓0 6= 0.
Initial Conditions z0 2 N1 with ✓0 = 0: The following

manoeuvre is used in order to derive bounds �N1
i , i 2 N�2,

satisfying Inequality (6) for initial condition whose angular
deviation is equal to zero:

a) drive towards the y-axis until (0, y0, 0)T is reached.
b) drive forward while slightly steering in order to reduce

the y-component to y0/2; a position (x̄, y0/2, 0)T for
some x̄ > 0 is reached.

c) carry out a symmetric manoeuvre while driving back-
ward so that the origin 0R3 is reached.

The number of steps needed in order to perform this manoeu-
vre depends on the constraints and the sampling time T , which
is supposed to satisfy i · T = 1 for some integer i 2 N as in
Subsection IV-A. To this end, we define

k?T :=

⇠
⇡

min{�wmin, wmax,⇡} · T

⇡
,

l?T :=

&
4
p
s/q1

min{�vmin, vmax, 4
p
s/q1} · T

'

where the vehicle can turn by 180 degrees in k?T steps and
drive to the y-axis in l?T steps, respectively. In addition to
Inequality (15), the Condition

r1  q1 · T
2

(25)

x-position (m)
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

y
-p
os
it
io
n
(m

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y0 = 1 (m)
y0 = 0.75 (m)
y0 = 0.5 (m)
y0 = 0.25 (m)

y0 (m)
0 0.5 1 1.5 2

|v
(i
)|
(m

/s
),
|w

(i
)|
(r
ad

/s
)

0

0.2

0.4

0.6

0.8

1

1.2

|v(i)|
|w(i)|

Fig. 3. Trajectories of parts b) and c) of the manoeuvre starting from different
initial conditions on the y-axis (left). The respective controls are displayed
on the right.

is assumed in order to keep the presentation technically simple.
Initial conditions z0 = (x0, y0, 0)T � 0 are considered

first. Firstly, the vehicle does not move for k?T steps. Hence,
Inequality (14) holds with cN1

i = 1 for i 2 {0, 1, . . . , k?T �1}.
Then, the robot drives towards the y-axis in l?T steps us-
ing u(k?T +i) = (�x0 ·(l?TT )�1, 0)T 2 U , i = 0, 1, . . . , l?T �1,
which allows to estimate `(zu(k?T + i; z0), u(k?T + i)) first by
q1x4

0(1� i/l?T )
4 + q2y20 + q1x4

0/(2l
?
T (l?TT )

3) using (25) and,
then, by

`?(z0)� q1

✓
x4
0

l?T

◆
i� 1

2(l?TT )
3

�
.

Hence, Inequality (14) holds with cN1
0 = 1 + (2l?T (l

?
TT )

3)�1

and cN1
k?
T+i = 1 for all i 2 {1, 2, . . . , l?T � 1}.

The next part of the manoeuvre is performed in four
seconds with constant control effort ku(·)k such that the
angle is decreased to � arctan(

p
y0) during the first second

and then put back to zero while the y-position of the robot
decreases to y0/2. Afterwards, these two moves are carried
out backwards in order to reach the origin, cf. Figure 3 on the
left. To this end, the controls

w(i) = �w(T�1 + i) = �w(2T�1 + i) = w(3T�1 + i),

v(i) = v(T�1 + i) = �v(2T�1 + i) = �v(3T�1 + i),

i 2 {k?T + l?T , k
?
T + l?T + 1, . . . , k?T + l?T + T�1 � 1}, with

w(i) = � arctan(
p
y0) and v(i) = �

y0 arctan(
p
y0)

4p
y0+1

� 4

(26)

are employed. Note that this strategy ensures not to move when
starting at the origin. The resulting y-positions are given by
y(k?T + l?T + nT�1) = (1� n/4)y0 for n 2 {0, 1, 2, 3} while
the x-positions are, for i = k?T + l?T , given by x(i) = 0,
x(i+T�1) = x(i+3T�1) = sin(w(i)) ·v(i)/w(i), and x(i+
2T�1) = 2x(i + T�1). The manoeuvre has to be suitably
adapted if either control constraints enforce v(·) or w(·) to be
smaller or x(k?T + l?T + 2T�1) violates the state constraints.
However, since this manoeuvre is constructed for small y0,
constraints can be neglected.

Next, we evaluate the running costs and determine co-
efficients cN1

k?
T+l?T+i such that Inequality (14) holds for all

i 2 {0, 1, . . . , 4T�1 � 1}. To this end, the estimates

arctan2
p
y0  y0 and v(i)4  (2 + 3y0 + y20)

2y20/64
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for v(i) from (26) are employed where, for the derivation of
the latter, the two auxiliary inequalities (2+y0)2 · (y0+1)2 
(2 + 3y0 + y20)

2 and y20  2(2 + y0) · (
p
y0 + 1 � 1)2 were

exploited. Hence, using (2 + 3y0 + y20)  (y0 + 1.5)2 and
q2y20  `?(z0), we obtain that the running costs `(zu(k?T +
l?T ); z0), u(k

?
T + l?T )) are bounded by

 
1 +

(
p
s/q2 + 1.5)4r1

64q2
+ r2/q2

!
`?(z0) =: cN1

k?
T+l?T

`?(z0)

and, thus, Inequality (14) holds. Then, since sin2(w(i)) 
w(i)2 holds for w(i) from (26), `?(z(k?T + l?T + T�1)) 
q1v(i)4 + (9/16)q2y20 + q3y20 this yields Inequality (14) with
cN1

k?
T+l?T+T�1 given by

9/16 +
⇣
q3 + r2 + (q1 + r1)(

p
s/q2 + 1.5)4/64

⌘
q�1
2 .

Analogously, the coefficients cN1

k?
T+l?T+2T�1 and cN1

k?
T+l?T+3T�1

defined by 1/4 +
⇣
r2 + (16q1 + r1)(

p
s/q2 + 1.5)4/64

⌘
q�1
2

and 1/16+
⇣
q3 + r2 + (q1 + r1)(

p
s/q2 + 1.5)4/64

⌘
q�1
2 are

derived. For sampling time T < 1, further coefficients have
to be determined. To this end, the running costs `(·, ·) at
time k?T+l?T+nT�1+i, (n, i) 2 {0, 1, 2, 3}⇥{1, 2, . . . , T�1�
1}, are overestimated by plugging in the state
0

@
xu(k?T + l?T + (2.125� 0.5(n� 1.5)2) · T�1; z0)

(1� 0.25n)y0
✓u(k?T + l?T + T�1; z0)

1

A

instead of zu(k?T + l?T + nT�1 + i) while leaving the control
as it is. This yields, for i 2 {1, 2, . . . , T�1 � 1}, Inequality
(14) with the coefficients cN1

k?
T+l?T+nT�1+i defined by

cN1

k?
T+l?T+nT�1 +

8
>>>><

>>>>:

⇣
q1(
p
s/q2 + 1.5)4/64 + q3

⌘
q�1
2 , n = 0

⇣
15q1(

p
s/q2 + 1.5)4/64

⌘
q�1
2 , n = 1

q3q
�1
2 , n = 2

0, n = 3

.

(27)

The coefficients cN1
i , i = 1, 2, . . . , k?T + l?T + 4T�1 � 1, are

ordered descendingly in order to construct a new sequence
(c̄N1

i )
k?
T+l?T+4T�1�1

i=1 such that the property c̄N1
i�1 � c̄N1

i holds
for all i 2 {2, 3, . . . , k?T + l?T + 4T�1 � 1}. Then, setting
c̄N1
0 = cN1

0 and c̄N1
i = 0 for all i � k?T + l?T + 4T�1 yields

(c̄N1
i )1i=0. In conclusion, the accumulated bounds (�N1

i )i2N�2

of Condition (6) for the second manoeuvre are given by

�N1
i :=

i�1X

n=0

c̄N1
i , i 2 N�2. (28)

Initial Conditions z0 2 N1 with ✓0 6= 0: Next, we
show that Condition (6) with �N1

i , i 2 N�2, holds also
for z0 with ✓0 2 [�⇡, 0) [ (0,⇡) and, thus, for all initial
conditions z0 2 N1. Firstly, the robot turns k?T steps using
u(i) = (0,�✓0/k?TT )

T , i = 0, 1, . . . , k?T � 1, such that

✓u(k?T ; z0) = 0 is attained. This yields the running costs
`(zu(i; z0), u(i)) given by

q1x
4
0 + q2y

2
0 + q3✓

4
0


1�

✓
i

k?T

◆�4
+ r2

✓
✓0
k?TT

◆4

Using 1� (i/k?T ) 2 [0, 1] and Assumption (15) leads to

`(zu(i; z0), u(i))  `?(z0)� q3

✓
✓40
k?T

◆
i� 1

2(k?TT )
3

�

for i 2 {0, 1, . . . , k?T � 1}. Hence, the right hand side of
this inequality is always less or equal `?(z0) for i > 0. The
remaining parts of the manoeuvre are performed as before. We
show that this case is less costly than its counterpart ✓0 = 0
by the following calculations, in which the abbreviation ⌅ :=
r1v(k?T + l?T )

4 + r2w(k?T + l?T )
4 is used:

X

i2{0,k?
T+l?T }

`(zu(i; z0), u(i))

= `?(z0) + q2y
2
0 + r2

✓
✓0
k?TT

◆4

+ ⌅

(15)
 2 · `?(z0) + ⌅ 

⇣
cN1
0 + cN1

k?
T+l?T

⌘
· `?(z0).

In conclusion, the accumulated bounds given by (28) can be
used to ensure Condition (6) for initial conditions z0 with
✓0 6= 0.

V. NUMERICAL RESULTS

In the preceding section, bounds

�i = min{i,max{�N1
i , �N2

i }}, for i 2 N�2

satisfying Assumption 1 were deduced, see (13). Here, the
bounds �N2

i =
Pi�1

n=0 c̄
N2
n were constructed according to the

procedure presented in the paragraph before (21) based on the
coefficients cN2

n displayed in (17), (18), and (20). Similarly,
�N1
i =

Pi�1
n=0 c̄

N1
n are derived using (27). In the following,

a prediction horizon N is determined such that the resulting
MPC closed-loop is asymptotically stable – based on these
bounds �i, i 2 N�2. To this end, the minimal stabilizing
horizon N̂ is defined as

min

(
N 2 N�2 :↵N = 1�

(�N � 1)
QN

k=2(�k � 1)
QN

k=2 �k �
QN

k=2(�k � 1)
> 0

)
,

a quantity, which depends on the sampling rate T and the
weighting coefficients of the running cost `(·, ·). Then, a
comparison with quadratic running costs is presented in Sub-
section V-B before, in Subsection V-C, numerical simulations
are conducted in order to show that MPC without stabilizing
constraints or costs steers differential drive robots to a desired
equilibrium.

A. Computation of the minimal stabilizing horizon N̂

In the considered problem setting of regulating a non-
holonomic robot to a desired set point, a particular feature
is that the robot may stay at its initial position (including
the initial angle) without moving. This property is reflected
in Definition (13) of the growth bounds (�i)i2N (using the
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convention �1 := 1 for simplicity) by �i  i, i 2 N.
The following proposition demonstrates the impact of this
observation for asymptotic stability of the MPC closed and
is exploited in Algorithm 2.

Proposition 6. Let N 2 N�3 hold and growth bounds (�i)Ni=1

be given by �i = i, i = 1, 2, . . . , N � 1, and �N = N � 1+ "
with " 2 [0, 1). Then, the performance index ↵N defined by
Formula (8) is strictly positive (↵N > 0).

Proof: The following calculation shows the assertion:

↵N
(8)
= 1�

(�N � 1)2
QN�2

k=1 k

�N (N � 1)
QN�2

k=2 k � (�N � 1)
QN�2

k=2 k

= 1� (�N � 1)2

(N � 2)�N + 1

=
(1� ")(N � 2) + (1� ")2

(N � 1 + ")(N � 2) + 1
> 0.

Let the sets U = [�0.6, 0.6] ⇥ [�⇡/4,⇡/4] and Z :=
[�2, 2]2 ⇥ R be given. Moreover, the weighting parame-
ters q1 = 1, q3 = 0.1, r1 = q1T/2, and r2 = q3T/2
of the running costs `(·, ·) are defined depending on the
sampling time T . Then, for a given sampling time T and
weighting coefficient q2, the minimal stabilizing horizon N̂
can be computed by Algorithm 2.

Algorithm 2 Calculating the minimal stabilizing horizon N̂

Given: Control bounds vmin, vmax, wmin, wmax, box con-
straints xmin, xmax, ymin, ymax, weighting coefficients q1, q2,
q3, r1, r2, and sampling time T .
Initialization: Set N = 1 and ↵ = 0.

1: while ↵ = 0 do

2: Increment N .
3: Minimize �?

N := max{�N2
N , �N1

N }
subject to s 2 R�0, (21), and (28).

4: Define �N := min{N, �?
N}.

5: If �N < N , set ↵ = 1� (�N�1)2

(N�2)�N+1 , see Proposition 6.
6: end while

Output Minimal stabilizing horizon length N̂ = N and the
performance index ↵N̂ = ↵.

The only optimization is carried out in Step 3 of Al-
gorithm 2. This can be done by a line search. Here, the
optimization variable s can be restricted to a compact interval
depending on the size of the state and control constraints, and
the weighting parameter q2.

TABLE I
MINIMAL STABILIZING HORIZON N̂ IN DEPENDENCE ON THE SAMPLING

TIME T AND THE WEIGHTING PARAMETER q2 FOR q1 = 1, q3 = 0.1,
r1 = q1T/2, AND r2 = q3T/2.

Sampling time T N̂(N̂ · T (seconds))
(seconds) q2 = 2 q2 = 5 q2 = 10 q2 = 100
1.00 12(12) 10(10) 8(8) 8(8)
0.50 25(12.5) 19(9.5) 16(8) 15(7.5)
0.25 48(12) 37(9.25) 32(8) 29(7.25)
0.10 122(12.2) 93(9.3) 79(7.9) 70(7)

2 4 6 8 10 12 14 16 18 20 22 24
−0.2

0

0.2

0.4

0.6

0.8

1

N

α
N

 

 
q2 = 2

q2 = 5

q2 = 10

Fig. 4. Dependence of the performance bound ↵N on the prediction
horizon N for sampling time T = 1 and q1 = 1, q3 = 0.1, r1 = q1T/2,
r2 = q3T/2.

The results of Algorithm 2 for sampling time T = 1 and
weighting coefficient q2 2 {2, 5, 10} are presented in Figure 4.
Using a larger weighting coefficient q2 results in smaller
minimal stabilizing horizons N̂ . Moreover, it can be seen
that the suboptimality index ↵ converges to one for prediction
horizon N tending to infinity. Furthermore, it is observed that
the radius s of the set N1 increases for larger q2, i.e. s = 0.8
(q2 = 2), s = 1.4 (q2 = 5), and s = 1.7 (q2 = 10). In contrast
to that, the influence of the sampling time T is negligible,
cf. Table I.

B. Comparison with quadratic running costs
Here, the proposed MPC scheme without stabilizing con-

straints or costs, i.e. Algorithm 1, is applied in order to stabi-
lize a unicycle mobile robot to the origin. The constraints and
weighting coefficients of the running costs ` in this subsection
and the subsequent one are the same as in the preceding
subsection with q2 = 5 and sampling time T = 0.25. In this
case, the theoretically calculated minimal stabilizing horizon
is given by N̂ = 37, cf. Table I. All simulations have been
run using the Matlab routine fmincon to solve the optimal
control problem in each MPC step. However, for a real time
implementation we recommend the ACADO toolkit [30].2 The
MPC performance is investigated through two sets of numeri-
cal simulations – on the one hand under the proposed running
costs (5); on the other hand using the standard quadratic
running costs with weighting matrices Q = diag(q1, q2, q3)
and R = diag(r1, r2).

First, the initial state of the robot is chosen to be z0 =
(0, 0.1, 0)T , i.e. located on the y-axis, close to the origin, and
with an orientation angle of zero. Both controllers steer the
robot close to the origin, but only the MPC controller with the
proposed running costs fulfils the control objective of steering
the robot to the origin, cf. Figure 5. This conclusion can be
also inferred from the scaled value function VN (zµN (n; z0)) ·
`?(z0)�1, n 2 N0, evaluated along the closed-loop trajectories
as depicted in Figure 6. Since the value function does not

2All simulations were also performed with ACADO to investigate the real-
time applicability of the proposed MPC scheme. Since all computation times
were less than 1 (ms) and, thus, negligible in comparison to the sampling time
T = 0.25 (s), the implicit assumption that the nonlinear optimization problem
of each MPC step can be solved instantaneously seems to be justified.
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Fig. 5. MPC Closed loop state trajectory and employed controls for sampling
time T = 0.25 and prediction horizon N = 37 under the proposed and
quadratic running costs with weighting matrices Q = diag(q1, q2, q3) and
R = diag(r1, r2).

decrease anymore after a few (n ⇡ 12) time steps, MPC with
quadratic running costs fails to ensure asymptotic stability for
the chosen prediction horizon N = 37.

Moreover, since uniform boundedness of supz02Z VN (z0) ·
`?(z0)�1 with respect to the prediction horizon N is a nec-
essary condition for asymptotic stability of the MPC closed-
loop, we further investigate this quantity. To this end, three
initial conditions z0 = (0, y0, 0)T , y0 2 {0.1, 0.01, 0.001},
are considered, cf. Figure 7. Under the proposed stage costs,
the quantity VN (z0) · `?(z0)�1 is bounded for all chosen
initial conditions. In contrary to this, for quadratic running
costs, the quantity VN (z0) · `?(z0)�1 grows unboundedly for
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·
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Fig. 6. Evolution of VN (zµN (n; z0)) · `?(z0)�1, n 2 {0, 1, . . . , 28}, for
z0 = (0, 0.1, 0)T , T = 0.25, and N = 37.

N

10 20 30 40 50 60 70 80

V
N
(z

0
)
·
!
"
(z

0
)−

1

10
0

10
1

10
2

Proposed running costs

Quadratic running costs

20 40 60 80
3.28

3.34

3.38

20 40 60 80
7.65

7.75

7.85

Fig. 7. Evaluation of VN (z0) · `?(z0)�1 for N = 2, 3, . . . , 86 for the pro-
posed and quadratic running costs with initial conditions: z0 = (0, 0.1, 0)T

(⇤), (⇤); z0 = (0, 0.01, 0)T (�), (�); and z0 = (0, 0.001, 0)T (⇤), (⇤).
T = 0.25.

decreasing y0-component, e.g. y0 = 10�i, i 2 N, in our
numerical simulations. Indeed, this observation was also made
for different weighting coefficients and prediction horizons.
Even in the setting with stabilizing terminal constraints and
costs [11], [21], non-quadratic terminal costs were deployed.
We conjecture that Assumption 1 cannot be satisfied for
quadratic running costs. In conclusion, using a non-quadratic
running cost `(·, ·) like (5) seems to be necessary in order to
ensure asymptotic stability of the MPC closed-loop without
stabilizing constraints or costs.

C. Numerical investigation of the required horizon length

In this subsection, the minimal stabilizing horizon N̂ is
numerically examined for the MPC controller. To this end, the
evolution of the value function VN (zµN (n; z0)), n 2 N0, along
the MPC closed-loop, using the proposed running costs (5)
for initial conditions z0 = (0, 10�i, 0)T , i 2 {0, 1, 2, 3, 4, 5},
is considered, cf. Figure 8 (left). If the value function de-
cays strictly, the relaxed Lyapunov inequality (9) holds —
a sufficient stability condition, cf. [31]. Hence, we com-
pute the minimal prediction horizon such that this stability
condition is satisfied until a numerical tolerance is reached,
i.e. VN (zµN (n; z0))  3 ·10�11 as shown in Figure 8 (right).
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Fig. 8. Evolution of VN (zµN (·; z0)) along the closed-loop trajectories
(left) and numerically computed stabilizing prediction horizons N̂ (right) for
sampling time T = 0.25 and different initial conditions.
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Fig. 9. MPC closed-loop trajectories emanating from initial conditions
(x0, y0)T on the circle of radius 1.9 (left; N = 7) and 0.1 (right; N = 15)
using the proposed running costs. The initial state and orientation is indicated
by the filled (black) triangles (T = 0.25).

So far, we concentrated on very particular initial conditions.
Now, the ability of the proposed MPC controller to stabilize a
unicycle mobile robot to an equilibrium point is demonstrated.
To this end, eight initial positions evenly distributed along a
large circle of 1.9 (m) radius, as well as five initial positions
distributed along a small circle of 0.1 (m) radius, are selected.
The initial orientation angle ✓0 is randomly chosen from the set
{i·⇡/4|i 2 {0, 1, 2, 3, 4, 5, 6, 7}}. The prediction horizon N is
chosen such that the value function VN (zµN (n; z0)), n 2 N0,
evaluated along the closed-loop reaches a neighbourhood of
the origin corresponding to a reference magnitude of 10�9 for
initial conditions on the large circle depicted and 10�11 for
initial conditions on the small circle, which is illustrated in
Figure 9. It is observed that stabilizing horizons of N = 7
and N = 15 are required for the initial conditions located on
the large and small circles, respectively.

Our numerical simulations show that the required prediction
horizon N rapidly grows if the initial condition is located
(very) close to the origin. Otherwise, much shorter horizons N
are sufficient to steer the robot (very close) to the desired
equilibrium. Independently of this observation, the numerically
calculated stabilizing prediction horizon is shorter than its
theoretically derived bound N̂ = 37. However, the calculated
stabilizing horizon N̂ holds for all initial states z0 in the
feasible domain Z. Moreover, both the estimates and the
manoeuvres used in order to derive �N2

N and �N1
N given

by (21) and (28), respectively, are not optimal as highlighted
in Section IV. Hence, the derived estimate of N̂ can be further
improved.

VI. CONCLUSIONS AND OUTLOOK

In this paper, a stabilizing MPC controller is developed
for the regulation problem of unicycle nonholonomic mobile
robots. Unlike the common stabilizing schemes presented
in the literature where terminal constraints and/or costs are
adopted, asymptotic stability of the developed controller is
guaranteed by the combination of suitably chosen running
costs and prediction horizon. Herein, the design of the running
costs reflects the task to control both the position and the
orientation of the robot and, thus, penalizes the direction
orthogonal to the desired orientation more than other direc-
tions. Then, open loop trajectories are constructed in order
to derive bounds on the value function and to determine

the length of the prediction horizon such that asymptotic
stability of the MPC closed-loop can be rigorously proven.
The presented proof of concept can serve as a blueprint for
deducing stability properties of similar applications. Finally,
numerical simulations are conducted in order to examine the
proposed controller and assess its performance in comparison
with a controller based on quadratic running costs.

Compared with the stabilizing MPC controllers presented in
the literature for nonholonomic mobile robots, the developed
controller stands as a unique one as it relaxes the compu-
tational complexities associated with stabilizing constraints
and/or costs. Future work will include the extension of the
proposed approach to regulation problems for domains with
obstacles as well as trajectory tracking and path following.
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