The pulsating aurora covers a broad range of fluctuating shapes that are
poorly characterized. The purpose of this paper is therefore to provide
objective and quantitative measures of the extent to which pulsating auroral
patches maintain their shape, drift and fluctuate in a coherent fashion. We
present results from a careful analysis of pulsating auroral patches using
all-sky cameras. We have identified four well-defined individual patches that
we follow in the patch frame of reference. In this way we avoid the space-time
ambiguity which complicates rocket and satellite measurements. We find that the
shape of the patches is remarkably persistent with 85-100% of the patch being
repeated for 4.5-8.5 min. Each of the three largest patches has a temporal
correlation with a negative dependence on distance, and thus does not fluctuate
in a coherent fashion. A time-delayed response within the patches indicates
that the so-called streaming mode might explain the incoherency. The patches
appear to drift differently from the SuperDARN-determined
E→ X B→ convection velocity.
However, in a nonrotating reference frame the patches drift with 230-287 m/s in
a north eastward direction, which is what typically could be expected for the
convection return flow