46 research outputs found

    Composite quasiparticle formation and the low-energy effective Hamiltonians of the one- and two-dimensional Hubbard Model

    Full text link
    We investigate the effect of hole doping on the strong-coupling Hubbard model at half-filling in spatial dimensions D≄1D\ge 1. We start with an antiferromagnetic mean-field description of the insulating state, and show that doping creates solitons in the antiferromagnetic background. In one dimension, the soliton is topological, spinless, and decoupled from the background antiferromagnetic fluctuations at low energies. In two dimensions and above, the soliton is non-topological, has spin quantum number 1/2, and is strongly coupled to the antiferromagnetic fluctuations. We derive the effective action governing the quasiparticle motion, study the properties of a single carrier, and comment on a possible description at finite concentration.Comment: REVTEX 3.0, 22 pages with 14 figures in the PostScript format compressed using uufile. Submitted to Phys. Rev. B. The complete PostScript file including figures can be obtained via ftp at ftp://serval.berkeley.edu/hubbard.ps . It is also available via www at http://roemer.fys.ku.dk/recent.ht

    Quantum Boltzmann equation of composite fermions interacting with a gauge field

    Full text link
    We derive the quantum Boltzmann equation (QBE) of composite fermions at/near the Μ=1/2\nu = 1/2 state using the non-equilibrium Green's function technique. The lowest order perturbative correction to the self-energy due to the strong gauge field fluctuations suggests that there is no well defined Landau-quasi-particle. Therefore, we cannot assume the existence of the Landau-quasi-particles {\it a priori} in the derivation of the QBE. Using an alternative formulation, we derive the QBE for the generalized Fermi surface displacement which corresponds to the local variation of the chemical potential in momentum space. {}From this QBE, one can understand in a unified fashion the Fermi-liquid behaviors of the density-density and the current-current correlation functions at Μ=1/2\nu = 1/2 (in the long wave length and the low frequency limits) and the singular behavior of the energy gap obtained from the finite temperature activation behavior of the compressibility near Μ=1/2\nu = 1/2. Implications of these results to the recent experiments are also discussed.Comment: 44 pages, Plain Tex, 5 figures (ps files) available upon reques

    A global view of porcine transcriptome in three tissues from a full-sib pair with extreme phenotypes in growth and fat deposition by paired-end RNA sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidation of the pig transcriptome is essential for interpreting functional elements of the genome and understanding the genetic architecture of complex traits such as fat deposition, metabolism and growth.</p> <p>Results</p> <p>Here we used massive parallel high-throughput RNA sequencing to generate a high-resolution map of the porcine mRNA and miRNA transcriptome in liver, longissimus dorsi and abdominal fat from two full-sib F<sub>2 </sub>hybrid pigs with segregated phenotypes on growth, blood physiological and biochemical parameters, and fat deposition. We obtained 8,508,418-10,219,332 uniquely mapped reads that covered 78.0% of the current annotated transcripts and identified 48,045-122,931 novel transcript fragments, which constituted 17,085-29,499 novel transcriptional active regions in six tested samples. We found that about 18.8% of the annotated genes showed alternative splicing patterns, and alternative 3' splicing is the most common type of alternative splicing events in pigs. Cross-tissue comparison revealed that many transcriptional events are tissue-differential and related to important biological functions in their corresponding tissues. We also detected a total of 164 potential novel miRNAs, most of which were tissue-specifically identified. Integrated analysis of genome-wide association study and differential gene expression revealed interesting candidate genes for complex traits, such as <it>IGF2, CYP1A1, CKM </it>and <it>CES1 </it>for heart weight, hemoglobin, pork pH value and serum cholesterol, respectively.</p> <p>Conclusions</p> <p>This study provides a global view of the complexity of the pig transcriptome, and gives an extensive new knowledge about alternative splicing, gene boundaries and miRNAs in pigs. Integrated analysis of genome wide association study and differential gene expression allows us to find important candidate genes for porcine complex traits.</p

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    A laboratory GTEM cell design for electromagnetic exposure study on biological system

    No full text
    International audienceIn this paper, a Gigaherz Transverse Electromagnetic (GTEM) cell is designed for laboratory use electromagnetic fields exposure study on biological system. Once the total volume and the area of exposure have been defined, a first calculation will be made to deduce the initial values of the parameters of the GTEM cell. The use of a fullwave electromagnetic simulation software will allow these parameters to be adjusted to obtain a low reflection on a frequency band around 915 MHz, and a fairly homogeneous electric field in the test zone... The effect of the biological medium on the distribution of the electromagnetic field will also be analyzed and the Specific Absorption Rate (SAR) estimation will be made with different parameters of the biological media

    Sport Events Simulation Based on Virtual Reality Technology

    No full text

    Mechanical properties and microstructure of a graphene oxide–cement composite

    No full text
    Graphene oxide (GO) is the product of chemical exfoliation of graphite. Due to its good dispersibility in water, high aspect ratio and excellent mechanical properties, GO is a potential candidate for use as nanoreinforcements in cement-based materials. In this paper, GO was used to enhance the mechanical properties of ordinary Portland cement paste. The introduction of 0.05 wt% GO can increase the GO-cement composite compressive strength by 15-33% and the flexural strength by 41-59%, respectively. Scanning electron microscope imaging of the GO-cement composite shows the high crack tortuosity, indicating that the two-dimensional GO sheet may form a barrier to crack propagation. Consequently, the GO-cement composite shows a broader stress-strain curve within the post-peak zone, leading to a less sudden failure. The addition of GO also increases the surface area of the GO-cement composite. This is attributed to increasing the production of calcium silicate hydrate. The results obtained in this investigation suggest that GO has potential for being used as nano-reinforcements in cement-based composite materials
    corecore