18 research outputs found

    Two-Level Atom in an Optical Parametric Oscillator: Spectra of Transmitted and Fluorescent Fields in the Weak Driving Field Limit

    Get PDF
    We consider the interaction of a two-level atom inside an optical parametric oscillator. In the weak driving field limit, we essentially have an atom-cavity system driven by the occasional pair of correlated photons, or weakly squeezed light. We find that we may have holes, or dips, in the spectrum of the fluorescent and transmitted light. This occurs even in the strong-coupling limit when we find holes in the vacuum-Rabi doublet. Also, spectra with a sub-natural linewidth may occur. These effects disappear for larger driving fields, unlike the spectral narrowing obtained in resonance fluorescence in a squeezed vacuum; here it is important that the squeezing parameter NN tends to zero so that the system interacts with only one correlated pair of photons at a time. We show that a previous explanation for spectral narrowing and spectral holes for incoherent scattering is not applicable in the present case, and propose a new explanation. We attribute these anomalous effects to quantum interference in the two-photon scattering of the system.Comment: 10 pages, 17 figures, submitted to Phys Rev

    Solving Phase Retrieval with a Learned Reference

    Full text link
    Fourier phase retrieval is a classical problem that deals with the recovery of an image from the amplitude measurements of its Fourier coefficients. Conventional methods solve this problem via iterative (alternating) minimization by leveraging some prior knowledge about the structure of the unknown image. The inherent ambiguities about shift and flip in the Fourier measurements make this problem especially difficult; and most of the existing methods use several random restarts with different permutations. In this paper, we assume that a known (learned) reference is added to the signal before capturing the Fourier amplitude measurements. Our method is inspired by the principle of adding a reference signal in holography. To recover the signal, we implement an iterative phase retrieval method as an unrolled network. Then we use back propagation to learn the reference that provides us the best reconstruction for a fixed number of phase retrieval iterations. We performed a number of simulations on a variety of datasets under different conditions and found that our proposed method for phase retrieval via unrolled network and learned reference provides near-perfect recovery at fixed (small) computational cost. We compared our method with standard Fourier phase retrieval methods and observed significant performance enhancement using the learned reference.Comment: Accepted to ECCV 2020. Code is available at https://github.com/CSIPlab/learnPR_referenc

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society

    Phase-dependent fluorescence linewidth narrowing in a three-level atom damped by a finite-bandwidth squeezed vacuum

    Get PDF
    We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a strongly driven three-level cascade system, we derive the master equation of the system from which we obtain simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual two-level system that reveals exactly the noise distribution in the input squeezed vacuum. [S1050-2947(97)00111-X]

    Decoherence and coherent population transfer between two coupled systems

    Get PDF
    We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of internal states that can be completely decoupled fi om the dissipative interactions (responsible for decoherence) and an external driving laser field. These superpositions, known as dark or trapping states, can he completely stable or can coherently interact with the remaining states. We examine the master equation describing the dissipative evolution of the system and identify conditions for population trapping and also classify processes that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay rates. in particular, we find that the trapping conditions can involve both coherent and dissipative interactions, and depending on the energy level structure of the system, the population can be trapped in a linear superposition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external fields or, in some cases. in one of the excited states of the system. A comprehensive analysis is presented of the different processes that are responsible for population trapping, and we illustrate these ideas with three examples of two coupled systems: single V- and Lambda-type three-level atoms and two nonidentical tao-level atoms, which are known to exhibit dark states. We show that the effect of population trapping does not necessarily require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the vacuum-induced coherent coupling between the systems could be easily observed in Lambda-type atoms. Our analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a maximally entangled state which is completely decoupled from the dissipative interaction

    Developments in the Photonic Theory of Fluorescence

    Get PDF
    Conventional fluorescence commonly arises when excited molecules relax to their ground electronic state, and most of the surplus energy dissipates in the form of photon emission. The consolidation and full development of theory based on this concept has paved the way for the discovery of several mechanistic variants that can come into play with the involvement of laser input – most notably the phenomenon of multiphoton-induced fluorescence. However, other effects can become apparent when off-resonant laser input is applied during the lifetime of the initial excited state. Examples include a recently identified scheme for laser-controlled fluorescence. Other systems of interest are those in which fluorescence is emitted from a set of two or more coupled nanoemitters. This chapter develops a quantum theoretical outlook to identify and describe these processes, leading to a discussion of potential applications ranging from all-optical switching to the generation of optical vortices

    Absorption behavior of neutral uranium atoms in a pulsed hollow cathode discharge

    No full text
    The temporal behavior of uranium neutrals in the postdischarge conditions in a pulsed hollow cathode discharge has been investigated by monitoring the time dependent absorption of the output radiation of a single-axial-mode dye laser by uranium atoms. Studies of the kinetics of the absorption suggest that electron ion recombination followed by deactivation, Penning ionization, and diffusion to the cathode wall are the dominant mechanisms in the postdischarge conditions

    CO Sensing Properties of Nanostructured La0.8Sr0.2CoO3 Sensors Synthesized by EDTA-Glycol Method

    No full text
    We report a simple method for the preparation of pure LaCoO3 and La1-xSrxCoO3 (x = 0.1, 0.2 and 0.25) nanostructures by the EDTA-Glycol method. The final powders obtained by this method have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements. The gas sensitivity of pure and Sr doped LaCoO3 samples were investigated for CO, NH3, H2 and LPG. La0.8Sr0.2CoO3 powders (sample GIII) calcined at 6500C, exhibited a good sensor response towards CO gas at 2500C. On impregnation of 1 wt.% Pd over sample GIII, the operation temperature reduced to 2000C with a significant rise in sensitivity. The response time also decreases from about 3.5 min for sample GIII to less than 2.5 min for the Pd loaded element. The electronic interaction between Pd and metal oxide semiconductor is proposed to account for the sensitization effect

    Corrosion tests of various alloys in fluorides of lithium, sodium and potassium (FLiNaK) medium for molten salt reactors in the temperature range of 550-750ÂșC using electrochemical techniques

    Get PDF
    84-88Hydrogen (H2) is an alternative to petroleum based environment polluting transport fuel. High temperature process heat in the range of 500-1000°C is needed for (H2) production by water splitting. This heat can be generated in molten salt nuclear reactors. Compatibility of materials is a bottle neck problem in this process. Corrosion behaviours of different alloys have been evaluated in fluoride eutectic FLiNaK in the temperature range of 550-750°C under static and dynamic conditions. Electrochemical polarization and impedance techniques have been used to estimate corrosion rate. The results show that the corrosion process is controlled by activation and in some cases by formation of passive layer. In static mode, the corrosion rates followed the order: Inconel 625 > Inconel 617 > Inconel 600 > Incoloy 800 > Ni 220 > Hastelloy N > Incoloy 800 HT. In dynamic mode, Haselloy N and Incoloy 800 show better corrosion resistance in comparison to other alloys
    corecore