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Decoherence and coherent population transfer between two coupled systems
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We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of
internal states that can be completely decoupled from the dissipative interactions~responsible for decoherence!
and an external driving laser field. These superpositions, known as dark or trapping states, can be completely
stable or can coherently interact with the remaining states. We examine the master equation describing the
dissipative evolution of the system and identify conditions for population trapping and also classify processes
that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are
possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay
rates. In particular, we find that the trapping conditions can involve both coherent and dissipative interactions,
and depending on the energy level structure of the system, the population can be trapped in a linear superpo-
sition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external
fields or, in some cases, in one of the excited states of the system. A comprehensive analysis is presented of the
different processes that are responsible for population trapping, and we illustrate these ideas with three ex-
amples of two coupled systems: singleV- andL-type three-level atoms and two nonidentical two-level atoms,
which are known to exhibit dark states. We show that the effect of population trapping does not necessarily
require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the
vacuum-induced coherent coupling between the systems could be easily observed inL-type atoms. Our
analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a
maximally entangled state which is completely decoupled from the dissipative interaction.

PACS number~s!: 32.80.Qk, 32.50.1d, 42.50.Gy, 42.50.Ar
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I. INTRODUCTION

The control and manipulation of information transfer pr
cesses is a topic of much current interest because of
many possible applications in quantum computation, telep
tation, and quantum information theory. Ways of controlli
decoherence, and of producing maximum entanglement
of particular importance.

Information can be transferred between two systems
coherent or incoherent interactions. The coherent interact
can be stimulated by an external field such as a laser tha
induce coherent oscillations of the dipole moments of
systems, or can produce coherent superpositions of thei
ternal states. The incoherent interactions occur as spont
ous emission from one system to the other resulting from
coupling of the systems to the same modes of the vacu
field. Coherent interactions lead to nondissipative~revers-
ible! transfers of population between systems, whereas tr
fers induced by spontaneous emission are dissipative~irre-
versible!. Whilst coherent processes are easy to control,
spontaneous emission from two interacting systems lead
losses~decoherence! as only a small part of the radiatio
emitted by one system can be absorbed by the other. M
over, these two processes are not complementary to
other, since any coherent interaction is accompanied
spontaneous emission. Therefore, the problem of transfer
information in modified environments which suppress or
duce spontaneous emission has attracted considerable
est in recent years. It has been shown that an effec
method to modify spontaneous emission is to place a rad
ing system in a frequency-dependent reservoir such a
1050-2947/2000/62~1!/013413~12!/$15.00 62 0134
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electromagnetic cavity@1#, an optical waveguide@2#, or a
photonic band-gap material@3#, which changes the density o
modes of the vacuum field into which the system can em

Another process that can modify spontaneous emissio
quantum interference. It was predicted by Agarwal@4# in a
degenerate three-level atom and is now a well-known p
nomenon that can lead to many interesting effects, such
electromagnetically induced transparency@5#, lasing without
inversion@6#, and the narrowing of optical transitions@7,8#.
The essential feature of quantum interference is the existe
of quantum superposition states, which can be decoup
from the coherent and incoherent interactions. These sta
known as dark or trapped states, were also predicted in o
configurations of three-level and multilevel atoms, as well
in multiatom systems@9,10#, and many practical application
have been suggested, for example, in high-resolution la
spectroscopy@11#, laser cooling@12#, and quantum comput
ing @13–15#.

Although the trapping states have the common prope
that the population will stay in such a state for an extrem
long time, they can, however, be implemented in differe
ways. In a multilevel system the population can be trappe
a linear superposition of two or more bare states, a dres
state corresponding to an eigenstate of the atoms plus e
nal fields, or in some cases, in one of the excited states o
system. The starting point of the standard analysis of
origin of population trapping in a specific multilevel syste
is a numerical or analytical solution for the populations, t
coherences, or the fluorescence or absorption spectra@16–
20#. The results are then analyzed in terms of the parame
of the system such as the damping rates, detunings, and
©2000 The American Physical Society13-1
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frequencies of the driving fields, and the origin of populati
trapping is usually explored in terms of dressed states of
system.

In this paper we demonstrate a qualitatively different a
proach to the problem of population trapping. We show h
the master equation of two coupled systems enables u
identify conditions for population trapping and to classify t
coherent and incoherent processes responsible for the t
fer of population to a trapping state. Specifically, we exa
ine the dynamics of two arbitrary systems coupled throu
the three-dimensional electromagnetic vacuum field
driven by a single-mode coherent laser field. The systems
represented by transition dipole moments which refer eit
to the two transitions in a single multilevel atom, or to t
individual transitions in two separate two-level atoms. T
master equation for two interacting systems can, of cou
be solved directly in many cases and, as we have mentio
above, the conditions for population trapping can be fou
from the final results. Nevertheless, in some cases su
direct method can be laborious and uninformative. Our
proach provides a simple picture of the processes respon
for the population trapping which enables us to obtain a b
ter understanding of the physics of this effect. Using an u
tary transformation of the dipole moments of the systems,
rewrite the master equation in the representation of supe
sition systems that are not coupled to each other through
vacuum field, but can be coupled through coherent inte
tions. We find the general condition for the complete dec
pling of one of the superpositions from the dissipative int
actions and identify coherent processes that can transfe
population between the superpositions. To our knowled
the analysis of the conditions and processes responsible
the transfer of the population between two coupled syste
has not been previously presented in the literature.

In Sec. II we give a general description of the mas
equation for two arbitrary systems and then, in Sec. III,
introduce a unitary transformation to the superposition s
tems. Finally, in Sec. IV we illustrate our approach for thr
specific examples of two coupled systems, and obtain a n
ber of interesting results. For instance, our study of popu
tion trapping in the system of two nonidentical atoms sho
that the atoms can be driven into a maximally entangled s
which exhibits zero decoherence.

II. MASTER EQUATION OF TWO
INTERACTING SYSTEMS

We start with a quite general description of two intera
ing systems, driven by a single-mode coherent laser field
amplitudeE and phasef. The systems, which we will cal
bare systems, are represented by induced dipole momen

m̃15m1S1
11m1* S1

2 ,
~1!

m̃25m2S2
11m2* S2

2 ,

wheremi is the dipole matrix element of thei th system, and
Si

1 and Si
2 ( i 51,2) are dipole raising and lowering oper

tors, respectively. The dipole moments are assumed to o
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late with different frequenciesv1 andv2, and are coupled to
the three-dimensional multimode electromagnetic fi
whose modes are in a vacuum state. The total Hamilton
describing the energies of the systems, electromagnetic
and interactions, in the electric-dipole and RWA approxim
tions, is composed of four terms

H5Hs1Hv1HsL1Hsv , ~2!

where

Hs5\v1S1
1S1

21\v2S2
1S2

2 ~3!

is the Hamiltonian of the two bare systems,

Hv5(
ks

\vksS âks
† âks1

1

2D ~4!

is the Hamiltonian of the three-dimensional multimode ele
tromagnetic field,

HsL52
1

2
\@~V1S1

11V2S2
1!eivLt1H.c.# ~5!

is the interaction of the systems with the coherent laser fi
and

Hsv5(
ks

$@m1•gks~r1!S1
11m2•gks~r2!S2

1#âks1H.c.%

~6!

is the interaction of the bare systems with the multimo
vacuum field. Here,vL is the frequency of the driving lase
field, âks

† and âks are the creation and annihilation operato
of a photon in the mode (k,s) with wave vectork and po-
larization s, the coefficientmi•gks(r i) is the coupling con-
stant of the dipole momentmi with the mode functiongks(r i)
of the three-dimensional multimode vacuum field, evalua
at the positionr i of the i th dipole, and

V i5mi•EeikL•r i/\ ~7!

is the Rabi frequency of thei th system located at a pointr i
and kL is the wave vector of the driving laser field. For
single laser coupled to both systems the Rabi frequenciesV1
andV2 are related by

V25V1

m2 cosu1

m1 cosu2
eikL•(r22r1), ~8!

whereu i is the angle betweenmi and the polarization vecto
of the laser field,m i5umi u is the magnitude of thei th dipole
moment, and exp@ikL•(r22r1)# is the phase difference aris
ing from different positions of the dipoles.

A standard procedure employing the Born and Mark
approximations leads to a description of the dynamics of
systems in terms of the master equation for the reduced
sity operatorr. For two general systems, the master equat
can be written in the Lindblad form as

ṙ5Lndr1Ldr, ~9!
3-2
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where the Liouville operatorLnd describes the nondissipa
tive part of the evolution

Lndr52
i

\
@H8,r#, ~10!

andLd the dissipative part

Ldr52
1

2
G1~S1

1S1
2r1rS1

1S1
222S1

2rS1
1!

2
1

2
G12~S1

1S2
2r1rS1

1S2
222S2

2rS1
1!

2
1

2
G12~S2

1S1
2r1rS2

1S1
222S1

2rS2
1!

2
1

2
G2~S2

1S2
2r1rS2

1S2
222S2

2rS2
1!, ~11!

with

H85\~v11d1
(2)!S1

1S1
21\~v21d2

(2)!S2
1S2

21\d1
(1)S1

2S1
1

1\d2
(1)S2

2S2
11\d12

(2)~S1
1S2

21S2
1S1

2!

1\d12
(1)~S1

2S2
11S2

2S1
1!1HsL , ~12!

andHsL is given in Eq.~5!. The coefficient

G i5p(
ks

umi•gks~r i !u2d~k2ki ! ~ i 51,2! ~13!

is the spontaneous damping rate of thei th system resulting
from the coupling of the system to the vacuum field, and

G125G215p(
ks

@m1•gks~r1!#@m2* •gks* ~r2!#d~k2k0!,

~14!

is a generalized~cross-! damping rate arising from the cou
pling of the bare systems through the vacuum field. T
terms proportional toG12 represent an incoherent exchan
of the excitation between the systems such that one of
systems spontaneously emits photons which are then
sorbed by the other system.

The remaining parameters

d i
(6)5P

1

c (
ks

umi•gks~r i !u2
1

k6ki
~15!

represent a part of the Lamb shift, induced by the first-or
coupling in the HamiltonianHsv , of the ground and excited
states of the systems, while

d12
(6)5d21

(6)5P
1

c (
ks

@m1•gks~r1!#@m2* •gks* ~r2!#
1

k6k0

~16!
01341
e
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is the vacuum-induced coupling between the systems
Eqs. ~13!–~16!, k5uku, ki5v i /c, k05(v11v2)/2, and P
refers to the Cauchy principal value.

According to Eq.~12!, the parametersd i
(6) can be consid-

ered as a part of the frequenciesv1 and v2, and thus they
can be omitted or, in general, can be included into the
namics by redefining the frequencies toṽ i5v i1d i

(2) .
Therefore, we will not present calculations of the Lamb sh
However, we are interested in the qualitative effects of
interactions between the systems, and the role played byd12

(6)

in their dynamics. It is evident from Eq.~12! that the param-
eterd12

(6) does not appear as a shift of the energies, but c
tributes to the coherent coupling between the bare syst
@21#. Thus, the interaction with the vacuum field not on
produces dissipative spontaneous emission but also leads
coherent coupling between the systems.

We may find the explicit form of the damping rates a
the coherent coupling coefficient by evaluating the sums
Eqs.~13!, ~14!, and~16!. In the plane-wave representation
the three-dimensional multimode field in free space,gks(r i)
is defined as

gks~r i !5S ck

2pe0\~2p!3D 1/2

êkse
ik•r i, ~17!

where êks is the unit polarization vector of the field mod
(k,s…. In the spherical representation the unit orthogonal
larization vectorsêk1 and êk2 may be taken as@22#

êk15~2cosu cosf,2cosu sinf,sinu!,

êk25~sinf,2cosf,0!, ~18!

and the sum overk can be changed into an integral

(
ks

→ 1

c (
s51

2 E
0

`

k2 dkE
0

p

sinu duE
0

2p

df, ~19!

where (k,u,f) denote spherical coordinates. Substituti
Eq. ~19! into Eqs.~13! and~14!, and assuming that the dipol
moments are both linearly or both circularly polarized, w
obtain the following explicit expressions for the spontaneo
damping rates:

G i5
ki

3m i
2

6pe0\
~ i 51,2!, ~20!

and the cross-damping rate

G125
3

4
AG1G2H @~m̂1•m̂2!2~m̂1• r̂12!~m̂2• r̂12!#

sin~k0r 12!

k0r 12

1@~m̂1•m̂2!23~m̂1• r̂12!~m̂2• r̂12!#

3Fcos~k0r 12!

~k0r 12!
2

2
sin~k0r 12!

~k0r 12!
3 G J , ~21!
3-3
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wherer 125ur22r1u, andm̂i andr̂12 are unit vectors along the
i th dipole moment and the line connecting the two syste
respectively.

Using Eq. ~19! and the explicit expressions forG i and
G12, the coherent couplingd125d12

(1)1d12
(2) can be written

as

d125
AG1G2

p
PE

2`

`

dk F~kr12!S 1

k2k0
1

1

k1k0
D , ~22!

whereF(kr12)5G12/AG1G2, andG12 is given in Eq.~21!.
The parameterd12 depends onr 12 and can have signifi-

cantly different values depending on whetherkr1250 or
kr12Þ0. For kr1250 which, for example, occurs for two
dipole moments in the same atom,F(kr12)51 and thend12
reduces to a form similar to the Lamb shift. Whenkr12Þ0,
we can evaluate the integral by contour methods, and ob

d125
3

4
AG1G2H 2@~m̂1•m̂2!2~m̂1• r̂12!~m̂2• r̂12!#

cos~k0r 12!

k0r 12

1@~m̂1•m̂2!23~m̂1• r̂12!~m̂2• r̂12!#

3Fsin~k0r 12!

~k0r 12!
2

1
cos~k0r 12!

~k0r 12!
3 G J , ~23!

which is the familiar retarded dipole-dipole interaction b
tween the systems@23–27#. The parameters~21! and ~23!
depend on the mutual orientation of the dipole moments
the systems and their separationr 12. For large separation
k0r 12 goes to infinity, and thenG125d1250, independent of
the mutual orientation of the dipole moments. By contra
for very small separations~much smaller than the optica
wavelength!, k0r 12 goes to zero, and thenG12 andd12 reduce
to

G125AG1G2~m̂1•m̂2!, ~24!

and

d125
3AG1G2

4~k0r 12!
3

@~m̂1•m̂2!23~m̂1• r̂12!~m̂2• r̂12!#. ~25!

For this cased12 corresponds to the static dipole-dipole i
teraction potential. The magnitude of the parameters~24! and
~25! depends on the mutual orientation of the dipole m
ments and vanishes when they are perpendicular. For par
dipole moments the parameters attain their maximal valu

III. SUPERPOSITION SYSTEMS

Equations~11! and ~12! illustrate the significance of the
generalized damping rateG12 and the interaction energyd12.
These two parameters are not associated with individual
tems but appear as coupling terms between the two syst
The parameterG12 introduces a coupling through the diss
pative process of spontaneous emission, whiled12 introduces
a coherent coupling through the nondissipative proce
01341
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These two couplings introduce off-diagonal terms into t
master equation.

The traditional method of solving the master equation
to calculate equations of motion for the density-matrix e
ments and solve them by direct integration, or by a trans
mation to easily solvable algebraic equations. Anoth
method is to diagonalize the HamiltonianH8, which leads to
the dressed states of the system, and next to represen
dissipative part as spontaneous emission among th
dressed states@28#. Here, we propose an alternative meth
where we introduce a unitary transformation of the dipo
moments of the bare systems which diagonalizes the diss
tive part of the master equation. In this approach the t
coupled systems are represented by linear superposit
which decay independently with significantly different rate
but which can be coupled through coherent interactions. T
will allow us to identify the coherent processes which c
transfer population between the two systems in the abse
of the dissipative interaction.

We introduce new dipole operatorsSs
1 and Sa

1 that are
linear combinations of theS1

1 andS2
1 operators

Ss
15uS1

11vS2
1 ,

~26!
Sa

15vS1
12uS2

1 ,

whereu andv will be related through the condition

uuu21uvu251, ~27!

which ensures that the transition to the superposition op
tors is a unitary transformation. The operatorsSs

1 and Sa
1

represent, respectively, symmetric and antisymmetric su
positions of the dipole moments of the two bare systems
terms of the operators~26!, and with a proper choice ofu and
v, we can rewrite the dissipative part~11! of the master
equation in a form

Ldr52Css~Ss
1Ss

2r1rSs
1Ss

222Ss
2rSs

1!

2Caa~Sa
1Sa

2r1rSa
1Sa

222Sa
2rSa

1!

2Csa~Ss
1Sa

2r1rSs
1Sa

222Sa
2rSs

1!

2Cas~Sa
1Ss

2r1rSa
1Ss

222Ss
2rSa

1!. ~28!

By simple comparison of coefficients in Eqs.~11! and
~28!, we can expressCmn (m,n5s,a), u andv in terms of
G i ( i 51,2) andG12 as

Css5
1

2

~G1
21G2

212G12AG1G2!

G11G2
, ~29!

Caa5
~AG1G22G12!AG1G2

G11G2
, ~30!

Csa5Cas5
1

2

~G12G2!~AG1G22G12!

G11G2
, ~31!

and
3-4
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u5
AG1

AG11G2

, ~32!

v5
AG2

AG11G2

. ~33!

The transformed dissipative part~28! of the master equa
tion has a form similar to Eq.~11!. Of course, the real ad
vantage of any unitary transformation of Eq.~11! appears
only if the transformed part is less complicated than the
tial one. Although in general the two forms~11! and ~28!
look similar, the advantage of the transformed form~28!
over ~11! is obtained whenG125AG1G2 and/or the damping
rates of the original systems are equal (G15G25G). Ac-
cording to Eq.~21!, G125AG1G2 when the two dipole mo-
ments are parallel and separated by distances smaller
the optical wavelength. When the damping rates are eq
Csa5Cas50, and then the symmetric and antisymmetric s
perpositions decay independently with the decay rates1

2 (G
1G12) and 1

2 (G2G12), respectively. In other words, forG1
5G2 the transformation~26! diagonalizes the dispersive pa
of the master equation. Furthermore, ifG125AG1G2 then
th

ym

e-
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m
ra

E
m
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es
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Caa5Csa5Cas50 regardless of the ratio betweenG1 and
G2. In this case the antisymmetric superpositiondecouples
from the dissipative interactions and consequently does
decay. This implies that spontaneous emission can be
trolled and even suppressed by appropriately engineering
dissipative interactionG12 between the systems.

The above discussion shows that the basic feature of
two coupled systems is the existence of an antisymme
superposition which can be decoupled from the dissipa
interactions. The modification of the dissipative interactio
is an example of quantum interference between two coup
systems, in that the spontaneous emission from one of t
modifies the spontaneous emission from the other. This p
nomenon leads to symmetric and antisymmetric superp
tions which may decay independently with significan
modified rates. The decay rate of the antisymmetric supe
sition may be greatly reduced or even completely s
pressed. An interesting question arises as to whether the
decaying antisymmetric superposition can still be coupled
the coherent interactions. These interactions can cohere
transfer population between the superpositions. In orde
check this, we rewrite the HamiltonianH8 in terms of theSs

1

andSa
1 operators as
H852\F S DL1
~G12G2!

G11G2
D DSs

1Ss
21S DL2

~G12G2!

G11G2
D DSa

1Sa
212D

AG1G2

G11G2
~Ss

1Sa
21Sa

1Ss
2!G

1\d12F2AG1G2

G11G2
~Ss

1Ss
22Sa

1Sa
2!1

~G12G2!

G11G2
~Ss

1Sa
21Sa

1Ss
2!G2

\

2AG11G2

@~AG1V11AG2V2!~Ss
11Ss

2!

1~AG2V12AG1V2!~Sa
11Sa

2!#, ~34!
e
the
eld

osi-

tric

ving
whereD5 1
2 (ṽ22ṽ1) and DL5vL2 1

2 (ṽ11ṽ2) is the de-
tuning of the laser field from the average frequency of
two dipole moments.

The first term in Eq.~34! arises from the HamiltonianHs
and shows that the energies of the symmetric and antis
metric superpositions depend on the energy differenceD be-
tween the bare systems and the damping ratesG i . Moreover,
the energy differenceD introduces a coherent coupling b
tween the superpositions. If the bare systems are iden
(D50 andG15G2) then the superpositions have the sa
energies and there is no contribution to the coherent inte
tion from the HamiltonianHs .

In the transformed representation the interactiond12 be-
tween the two bare systems, given by the second term in
~34!, has two effects on the coherent dynamics of the sy
metric and antisymmetric superpositions. The first is a s
of the energies and the second is the coherent interac
between the superpositions. It is seen from Eq.~34! that the
coherent interaction between the superpositions vanishe
identical atoms withG15G2 and then the effect ofd12 is
only the shift of the energies from their unperturbed valu
It is interesting that the interactiond12 shifts the energies in
the opposite directions.
e

-

al
e
c-

q.
-

ft
on

for

.

The third term in Eq.~34! represents the interaction of th
superpositions with the driving laser field. We see that
symmetric superposition strongly couples to the laser fi
with an effective Rabi frequency proportional toV11V2,
whereas the Rabi frequency of the antisymmetric superp
tion is proportional toV12V2 and vanishes forV15V2. In
the latter case, the laser field couples only to the symme
superposition. According to Eq.~8!, this takes place only if
the dipole moments experience the same phase of the dri
field.

We can rewrite the Hamiltonian~34! in a more compact
form,

H852\@~DL1D8!Ss
1Ss

21~DL2D8!Sa
1Sa

2

1Dc~Ss
1Sa

21Sa
1Ss

2!#

2
\

2AG11G2

@~AG1V11AG2V2!~Ss
11Ss

2!

1~AG2V12AG1V2!~Sa
11Sa

2!#, ~35!

where
3-5
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D85
1

G11G2
@~G12G2!D22d12AG1G2# ~36!

and

Dc5
1

G11G2
@2DAG1G21d12~G12G2!#. ~37!

The physical interpretation of Eq.~35! is straightforward:D8
is a shift of the energies of the superposition systems andDc
is the magnitude of the coherent coupling between the su
positions. The parameters depend on the vacuum-indu
coherent couplingd12, which can strongly affect the cohe
ent evolution of the systems. Ford12Þ0 and identical bare
systems the shiftD8Þ0, but can vanish for nonidentical bar
systems. This occurs for

d125
1

2

~G12G2!D

AG1G2

. ~38!

In contrast to the shiftD8, which is different from zero for
identical systems, the coherent couplingDc can be different
from zero only for nonidentical bare systems. However, e
in this case the coupling can vanish, which happens for

D52
d12~G12G2!

2AG1G2

. ~39!

Thus, with the condition~39! andG125AG1G2 the antisym-
metrical superposition of two nonidentical bare syste
completely decouples from the interactions.

The master equation with the dissipative part~28! and the
Hamiltonian~35! gives an elegant description of the physi
involved in the existence of coherent superpositions in
interaction of two dipole systems, their dissipative intera
tions with the vacuum field~environment!, and the coupling
to the coherent interactions. An important point is that
master equation is quite general and can be applied to
arbitrary system composed of two dipole moments. The c
dition G125AG1G2 for the decoupling of the antisymmetri
superposition from the dissipative interaction is valid for
bitrary dipole systems, whereas the presence of the cohe
interaction between the superpositions depends on spe
examples of the dipole systems and appears only if the
systems are nonidentical with different energies and/or sp
taneous damping rates. In the next section we will cons
specific examples of two systems and discuss the condit
of their couplings to coherent interactions.

IV. EXAMPLES

Let us illustrate our considerations with three examples
a quantum system which is composed of two interacting s
systems. The three particular quantum systems we cons
are a singleV-type three-level atom, a singleL-type three-
level atom, and two nonidentical two-level atoms. Each
the three systems is represented by two dipole momentsm1
~system 1! and m2 ~system 2! coupled to the same vacuum
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field and driven by a coherent laser field. These systems
known to exhibit the population trapping phenomenon, t
is, the system can be driven into a dark state from which
population is unable to leave.

A. Three-level V system

We consider a three-level atom in theV configuration
composed of two nondegenerate excited levelsu1& and u2&
and a single ground levelu3&. The levelsu1& and u2& can
decay to the ground level by spontaneous emission with
cay ratesG1 and G2, respectively, whereas transitions b
tween the excited levels are forbidden in the electric dip
approximation. The two interacting systems have dipole m
mentsm13 andm23 sharing the same atomic ground levelu3&
and represented by the operatorsS1

15(S1
2)†5u1&^3u and

S2
15(S2

2)†5u2&^3u. In this three-level atom the superpos
tion systems correspond to the symmetric and antisymme
superpositions of the atomic excited states

us&5
1

AG11G2

~AG1u1&1AG2u2&), ~40!

ua&5
1

AG11G2

~AG2u1&2AG1u2&). ~41!

The evolution of the system is described by a mas
equation of the same type as Eq.~9! with the specific form of
the HamiltonianH8. Since we have a single atom, the dipo
moments are at the same pointr15r2, the Rabi frequencies
are related by

V25V1AG2

G1

cosu1

cosu2
, ~42!

and the cross-damping term is given by@7#

G125pAG1G2, ~43!

wherep5(m̂1•m̂2) determines the mutual polarization of th
dipole moments of the two atomic transitions. For para
dipole momentsp51, whereasp50 for perpendicular po-
larizations. In the former case, the antisymmetric state
couples from the dissipative interaction and conseque
does not decay. However, the population of this state
still evolve in time due to the coherent coupling to the sy
metric state. In order to show this in more detail, we der
the equation of motion for the populationraa of the antisym-
metric state, which forG15G25G is given by

ṙaa52~12p!Graa1 iDc~ras2rsa!. ~44!

In the derivation of Eq.~44!, we have assumed equal Ra
frequencies,V15V2, and hence the antisymmetric state
not driven by the laser field. This will allow us to identif
excitation channels different from the laser field. The fi
term on the right-hand side of Eq.~44! arises from the dis-
sipative interaction of the antisymmetric state with t
vacuum, while the second term arises from the coherent
3-6



io
ta
si

n

u-
al
e
.
p

re
in

,

c
p

s
te
in

t

in

er

e

e
ud

ence
lso

B,
-

eld
ing

o-

ces
s-

pro-
phe-
ical

ser

nt
ling

DECOHERENCE AND COHERENT POPULATION . . . PHYSICAL REVIEW A62 013413
teraction with the symmetric state. Note that the interact
between the superpositions does not involve the ground s
and therefore is not accompanied by spontaneous emis
If Dc50 the steady-state populationraa50, unlessp51
and thenraa retains its initial value. This is the populatio
trapping effect, predicted by Agarwal@4#, that a degenerate
three-level atom excited initially into the antisymmetric s
perposition of the excited levels will stay in this state for
times. ForDcÞ0 and in the absence of the driving field, th
steady-state populationraa50 regardless of the initial value
This implies that the coherent interaction destroys the po
lation trapping in the stateua&.

The role of the coherent coupling can reverse in the p
ence of the driving field. In this case the coherent coupl
Dc can transfer the population from the drivenus& state to the
undriven and nondecayingua& state. This is shown in Fig. 1
where we plot the steady-state populationraa as a function
of DL for D55,d1250.1 and differentV. It is seen that the
antisymmetric state is populated by the presence of the
herent coupling to the symmetric state. The amount of po
lation in ua& increases with increasingV and attains the
maximum valueraa'1 for DL50 and very strong driving
fields.

The coherent transfer of the population between the
perpositions can leaveus& unpopulated despite that the sta
is continuously driven by the laser field. We illustrate this
Fig. 2, where we plot the populationrss as a function ofDL
for D55,d1250.1 and differentV. ForDL50 the population
rss50 regardless of the value ofV. The coherent interaction
between the superpositions transfers the population to
stateua& leaving the stateus& unpopulated.

The appearance of the zero in the populationrss results
from the presence of the coherent couplingDc , but the quan-
tity which determines the position of the zero is the detun
D8. According to Eq.~36!, for G15G2 the detuningD8 de-
pends solely on the vacuum induced coherent couplingd12.
Therefore, an experimental observation of a shift of the z

FIG. 1. The stationary population of the antisymmetric stateua&
as a function ofDL for G251, d1250.1, D55, p51, and differ-
ent V:V51 ~solid line!, V55 ~dashed line!, V510 ~dashed-
dotted line!, V525 ~dotted line!. All parameters are scaled toG1

throughout the figures and, for simplicity, we takeG151.
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from the DL50 position would provide evidence of th
vacuum induced coherent interaction in theV system. In Fig.
2 we have chosend1250.1, and even with such a large valu
of d12 no shift of the zero is visible. Cardimona and Stro
@21# have shown that the effect ofd12 on the dynamics of the
V system could be observed as a change in the fluoresc
intensity profile. However, the predicted changes are a
very small and could be difficult to observe. In Sec. IV
however, we show thatd12 can have an experimentally sig
nificant effect on the dynamics of aL system.

The lack of population in the stateus&, see Fig. 2, can be
interpreted as a population trapping induced by the laser fi
and the coherent interaction. However, the induced trapp
state is not entirely theua& state but rather a linear superp
sition of the groundu0& andua& states. Only in the limit of a
strong driving field does the induced trapping state redu
to ua&. An alternative way of viewing the process of tran
ferring population from the stateus& to ua& is to employ the
dressed-atom model of the system@28#. The dressed atom
approach provides a transparent picture of the physical
cesses responsible for population transfer and trapping
nomena. In this model we use a fully quantum-mechan
description of the HamiltonianH8, which for the three-level
system discussed here takes the form

H85H01VL , ~45!

where

H052\DL~Ss
1Ss

21Sa
1Sa

2!1\vLaL
†aL ~46!

is the Hamiltonian of the uncoupled system and the la
field, and

VL52\D~Ss
1Sa

21Sa
1Ss

2!2
\

A2
g~aL

†Ss
21Ss

1aL! ~47!

is the interaction Hamiltonian which includes the cohere
coupling between the superposition states and the coup

FIG. 2. The stationary population of the symmetric stateus& as a
function of DL for G251, d1250.1, D55, p51, and different
V: V51 ~solid line!, V55 ~dashed line!, V510 ~dashed-dotted
line!.
3-7
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UZMA AKRAM, Z. FICEK, AND S. SWAIN PHYSICAL REVIEW A 62 013413
of the symmetric state to the laser field. In Eq.~47!, g is the
system-field coupling constant, andaL (aL

†) is the annihila-
tion ~creation! operator for the driving field mode.

For DL50 the HamiltonianH0 has three degenerat
eigenstatesu3,N&, ua,N21&, and us,N21&, where u i ,N& is
the state with the atom in stateu i & andN photons present in
the driving laser mode. When we include the interactionVL
the degeneracy is lifted, resulting in triplets~dressed states!

u1,N&5
1

A2
@2aua,N21&1us,N21&2A2bu3,N&],

u0,N&52A2bua,N21&1au3,N&,

u2,N&5
1

A2
@2aua,N21&2us,N21&2A2bu3,N&],

~48!

with energies

EN,15NvL1V8,

EN,05NvL , ~49!

EN,25NvL2V8,

whereV85AD21 1
2 V2, a5D/V8, andb5V/2V8.

The dressed states~48! group into manifolds, each con
taining three states. Neighboring manifolds are separate
vL , while the states inside each manifold are separated
V8/2. The dressed states are connected by transition di
moments. It is easily verified that nonzero dipole mome
occur only between states within neighboring manifolds. U
ing Eq. ~48! and assuming thatm135m235m, we find that
the transition dipole moments betweenu i ,N11& ( i 50,2,
1) and u0,N& are

^N11,1umu0,N&5am,

^N11,0umu0,N&50, ~50!

^N11,2umu0,N&52am,

whereas the transition dipole moments^N,0umu i ,N21& be-
tweenu0,N& and the dressed statesu i ,N21& of the manifold
below are equal to zero. It is apparent from Eq.~50! that
transitions to the stateu0,N& are allowed from the states o
the manifold above, but are forbidden to the states of
manifold below. Therefore, the stateu0,N& is a trapping state
such that the population can be transferred into this state
cannot leave it. The transfers are allowed only whenDÞ0,
i.e., in the presence of the coherent coupling between
symmetric and antisymmetric superpositions. Otherwise,
D50, the stateu0,N& is completely decoupled from the re
maining dressed states. In this case the three-level sy
reduces to that equivalent to a two-level atom. We see fr
Eq. ~48! that the dressed stateu0,N& is a linear superposition
of the ua& and u3& states, and reduces to the stateua& for a
very strong driving field (V@D).
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Thus, the coherent interaction between the superposit
can have a constructive or destructive effect on the pop
tion trapping in aV-type three-level atom. In the absence
the driving field the coupling has a destructive effect on
population trapping in that it depopulates the stateua&. On
the other hand, in the presence of the driving field the c
pling has a constructive effect on the population trapp
since it creates a trapping superposition state of the gro
and the nondecaying antisymmetric states.

B. Three-level L system

Here, we consider a three-levelL-type atom composed o
a single upper levelu3& and two ground levelsu1& and u2&.
The two interacting systems have dipole momentsm31 and
m32 sharing the same atomic upper levelu3&. After introduc-
ing superposition operatorsSs

15(Ss
2)†5u3&^su and Sa

1

5(Sa
2)†5u3&^au, where us& and ua& are the superposition

states of the same form as Eqs.~40! and~41!, we obtain the
master equation of the same type as Eq.~9! with the dissi-
pative part~28! and the Hamiltonian~35! given by

H852\H ~DL1D8!Ss
2Ss

11~DL2D8!Sa
2Sa

1

1Dc~Ss
2Sa

11Sa
2Ss

1!1
1

2

AG1V

AG11G2

~Ss
11Ss

2!J ,

~51!

with G125pAG1G2, and we have assumed thatV15V2
5V. Note that the ordering of the superposition operators
Eq. ~51! is the reverse of that for theV system.

Following our procedure, we analyze conditions for pop
lation trapping using the equation of motion for the popu
tion raa of the antisymmetric state. For theL system, the
equation of motion is of the following form:

ṙaa5
2G1G2

G11G2
~12p!r332 iDc~ras2rsa!. ~52!

In the steady state (ṙaa50) with pÞ1 and Dc50 the
population in the upper stater3350. Thus the stateu3& is not
populated despite that is continuously driven by the laser
this case the population is entirely trapped in the antisy
metric state@29#. This is the well-known coherent populatio
trapping effect predicted by Alzettaet al. @30#, and experi-
mentally observed by Orriols@31# ~see also@32#!. However,
for p51 and Dc50 the antisymmetrical state decoupl
from the interactions, and then the steady-state popula
r33 is different from zero@33#. This shows that coheren
population trapping is possible only in the presence of dis
pative spontaneous emission from the upper level to the
tisymmetric superposition state. Moreover, coherent pop
tion trapping does not appear even ifpÞ1. According to Eq.
~52! this happens whenDcÞ0. We see that, similar to theV
system, the coherent coupling destroys population trapp
This is shown in Fig. 3, where we plot the steady-state po
lation r33 as a function ofD for DL50, V55, d1250.1,
3-8
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DECOHERENCE AND COHERENT POPULATION . . . PHYSICAL REVIEW A62 013413
p50.5, and two different values ofG2. It is evident that the
cancellation of the populationr33 appears only atDc50, i.e.,
in the absence of the coherent coupling between the antis
metric and symmetric states. ForG15G2 the cancellation
appears atD50, while for G1ÞG2 the effect appears at

D52
1

2

G12G2

AG1G2

d12. ~53!

Thus, forG1 significantly different fromG2 , the shift can be
large despite thatd12 is very small. Therefore, the vacuum
induced coherent coupling can be experimentally observe
the L system as a shift of the zero of the populationr33.
Note that in contrast to theV system, where the effect ofd12
could be important for nearly degenerate transitions@21#, in
theL system the effect could be observed with nondegen
ate transitions.

It is important to note that, in contrast to theV system,
there is no laser-induced population trapping in theL sys-
tem. We can show this by calculating the transition dip
moments between the dressed states of the system. The
cedure of calculating the dressed states of theL system is the
same as for theV system. The only difference is that no
the eigenvalues of the unperturbed HamiltonianH0 are
u3,N21&, ua,N&, us,N&, and the dressed states, withp51
andG15G2, are given by

u1,N&5
1

A2
@2aua,N&1us,N&2A2bu3,N21&],

u0,N&52A2bua,N&1au3,N21&, ~54!

u2,N&5
1

A2
@2aua,N&2us,N&2A2bu3,N21&].

Although the dressed states~54! are similar to that of the
V system@Eq. ~48!#, there is a crucial difference in that th
transition dipole moments betweenu i ,N11& and u0,N& are

FIG. 3. The stationary population of the upper stateu3& of a
L-type atom as a function of the splittingD for DL50, V55,
d1250.1, p50.5, and differentG2 : G251 ~solid line!, G2550
~dashed line!.
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all zero, but there are nonzero transition dipole mome
betweenu0,N& and the dressed statesu i ,N21& of the mani-
fold below, since

^N,0umu6,N21&56am,
~55!

^N,0umu0,N21&50.

Therefore, population is unable to flow into the stateu0,N&,
but can flow away from it. IfD50 thena50, and the state
u0,N& completely decouples from the remaining states. F
DÞ0 the stateu0,N& is coupled to the remaining states, b
does not participate in the dynamics of the system becau
cannot be populated by transitions from the other sta
There is no trapping state among the dressed states~54! as
each state of a given manifold has nonzero transition dip
moments to the dressed states of the manifold below.

We conclude that the process responsible for the pop
tion trapping in theL system is different from that in theV
system. In the former the trapping results from the dissi
tive decay of the population into the antisymmetric sta
whereas in the latter the trapping appears only if the antis
metric state is completely decoupled from the dissipative
teraction. Moreover, in the presence of the coherent coup
between the superposition states no population is trapped
specific state of theL system.

C. Two nonidentical two-level atoms

In this section we consider two nonidentical atoms se
rated by r12, coupled to each other via a retarded dipo
dipole interaction and to the three-dimensional electrom
netic vacuum field, leading to dissipative spontaneous de
Each atom is modeled as a two-level system with grou
state ugi& ( i 51,2) and excited stateuei&, connected by a
transition dipole momentmi . The atoms are assumed to ha
the transition frequenciesv1 and v2 respectively, and the
corresponding decay ratesG1 and G2. The master equation
for this system involves all parameters appearing in Eqs.~28!
and~35! with d12 being the retarded dipole-dipole interactio
~23!. As we have mentioned in Sec. III, the dipole-dipo
interaction has two effects on the dynamics of the syste
The interaction shifts the energies of the superposition s
tems in opposite directions, and contributes to the cohe
coupling between them. The latter happens only ifG1ÞG2.

It is convenient to represent the superposition system
terms of the so-called collective states of the two-atom s
tem, which correspond to the symmetric and antisymme
superpositions of the atoms@23,24#. In this representation
the two-atom system is equivalent to a single four-level s
tem with a single ground stateu0&5ug1&ug2&, two intermedi-
ate ~entangled! states

u1&5
1

AG11G2

~AG1ue1&ug2&1AG2ue2&ug1&), ~56!

u2&5
1

AG11G2

~AG2ue1&ug2&2AG1ue2&ug1&), ~57!
3-9
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UZMA AKRAM, Z. FICEK, AND S. SWAIN PHYSICAL REVIEW A 62 013413
and a single upper stateu1&5ue1&ue2&. The entangled state
~56! and~57! are independent ofD, but depend on the damp
ing ratesG1 and G2. For G15G2 the states are maximall
entangled, whereas for eitherG1!G2 or G1@G2, the en-
tangled states reduce to the product statesuei&ugj& ( iÞ j ). In
the basis of the collective states the superposition opera
Ss

1 andSa
1 are of the following form:

Ss
15

1

G11G2
@2AG1G2u1&^1u2~G12G2!u1&^2u#1u1&^0u,

~58!

Sa
15

21

G11G2
@2AG1G2u1&^2u1~G12G2!u1&^1u#1u2&^0u.

~59!

Before proceeding further, it is worth pointing out the phy
cal significance of various terms in Eqs.~58! and~59! to gain
insight into the underlying dynamics of the system. We s
that there are two channels of excitation in the two-at
system: The symmetrical channelu0&→u1&→u1&, and the
antisymmetrical channelu0&→u2&→u1&. The channels are
independent for identical atoms, but become correlated w
G1ÞG2. It is interesting to note that unequal damping ra
correlate transitions only from the upper to the intermedi
states, while the transitions from the intermediate state
the ground state remain independent.

Now, let us consider population trapping conditions in t
two-atom system and the mechanism of population tran
between the superpositions, especially between the entan
states~56! and~57!. As before, for theV andL systems, we
assume thatG125AG1G2 and derive the equation of motio
for the population of the antisymmetric stateu2&, which is of
the following form:

ṙ225
~G12G2!2

G11G2
r111 iDc~r122r21!

2
1

2
iV

~G12G2!

AG1~G11G2!
~r122r21!. ~60!

We see immediately that the antisymmetric stateu2& does
not decay, but can be populated by spontaneous emis
from the upper stateu1& and also by the nondissipative in
teraction with the stateu1&. The first condition is satisfied
only whenG1ÞG2. The last condition is satisfied only whe
Dc50. Thus, the transfer of population to the stateu2& does
not appear when the atoms are identical, but is possible
nonidentical atoms. In this case the upper state decays
superposition of the intermediate states, but then only a
of the population, that part in the symmetric stateu1&, can
decay to the ground stateu0&.

In Fig. 4 we plot the steady-state population of the st
u2& as a function ofDL for two different types of noniden
tical atoms. In the first case the atoms have the same da
ing rates (G15G2) but different transition frequencies (D
Þ0), while in the second case the atoms have the s
frequencies (D50) but different damping rates (G1ÞG2). It
is seen from Fig. 4 that in both cases the antisymmetric s
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can be populated even if it is decoupled from the dissipa
interaction and the driving field. The population is tran
ferred tou2& through the coherent couplingDc which, simi-
lar to theV-type atom, leaves the other excited states co
pletely unpopulated. This is shown in Fig. 5, where we p
the steady-state populationsr11 and r11 for G15G2 , D
51, d12510, andV55. It is evident from Fig. 5 that for
DL52d12 the states are not populated. In a similar way
the V system, the population is trapped in a linear super
sition of the u0& and u2& states, and for a very strong fiel
can be completely transferred to the stateu2&. This is shown
in Fig. 6, where we plot the steady-state populationr22 for
the same parameters as in Fig. 5, but differentV. Clearly, for
a strong driving field the population is completely transferr
to the stateu2&.

This result shows that we can relatively easily prep
two atoms, with different transition frequencies, in a ma
mally entangled state. The closeness of the prepared sta
the ideal one is measured by the fidelityF. HereF is equal to
the obtained maximum population in the stateu2&. For V

FIG. 4. The stationary population of the entangled stateu2& of
two nonidentical atoms forV55, d12510, p51, andG251, D
51 ~solid line!, G252, D50 ~dashed line!.

FIG. 5. The stationary population of the entangled stateu1& and
the upper stateu1& of two nonidentical atoms forG251, V55,
D51, d12510, andp51: r11 ~solid line!, r11 ~dashed line!.
3-10
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DECOHERENCE AND COHERENT POPULATION . . . PHYSICAL REVIEW A62 013413
@G1 the fidelity of the prepared state is maximal, equal to
The system has the advantage that the maximally entan
stateu2& is completely decoupled from the dissipative inte
action, i.e., is a decoherence-free state.

V. SUMMARY

In this paper we have examined the dynamics of two s
tems, coupled through the three-dimensional vacuum fi
and driven by a single-mode laser field. The systems h
been described in terms of the transition dipole mome
which refer either to two transitions in a single multilev
atom, or to the two transitions in two separate two-level
oms. We have shown that in each case the systems ca
represented by coherent symmetric and antisymmetric su
positions whose dynamics depend solely on the frequen
of the dipole moments, their mutual polarizations, and
phase difference arising from possible different positions
the dipoles. For identical systems confined in a region m
smaller than the resonant wavelength, so that the dipole
ments experience the same phase, the antisymmetric s
position totally decouples from the dynamics and rema
unaccessible by any interactions. A small frequency diff
ence between the dipole moments introduces a coherent
pling between the superpositions, which can have a const
tive or destructive effect on the population trapping. In t
absence of the driving field the coupling destroys the po
lation trapping that depopulates the dark superposition, w
one can drive the population into the dark superposition
the presence of driving. We have also shown that the ef
of population trapping does not necessarily require dec
pling of the antisymmetric superposition from the dissipat
interactions. For example, coherent population trapping, p
dicted in aL-type three-level atom, appears only in the pre
v.

e-
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ence of the dissipative coupling of the antisymmetric state
the atomic upper state. A similar feature occurs in the sys
of two nonidentical atoms. However, in this system, we a
show that the atoms can be driven into a maximally e
tangled state which exhibits zero decoherence.
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