View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Queensland eSpace

PHYSICAL REVIEW A, VOLUME 62, 013413

Decoherence and coherent population transfer between two coupled systems
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We show that an arbitrary system described by two dipole moments exhibits coherent superpositions of
internal states that can be completely decoupled from the dissipative interdcéispsnsible for decoherence
and an external driving laser field. These superpositions, known as dark or trapping states, can be completely
stable or can coherently interact with the remaining states. We examine the master equation describing the
dissipative evolution of the system and identify conditions for population trapping and also classify processes
that can transfer the population to these undriven and nondecaying states. It is shown that coherent transfers are
possible only if the two systems are nonidentical, that is the transitions have different frequencies and/or decay
rates. In particular, we find that the trapping conditions can involve both coherent and dissipative interactions,
and depending on the energy level structure of the system, the population can be trapped in a linear superpo-
sition of two or more bare states, a dressed state corresponding to an eigenstate of the system plus external
fields or, in some cases, in one of the excited states of the system. A comprehensive analysis is presented of the
different processes that are responsible for population trapping, and we illustrate these ideas with three ex-
amples of two coupled systems: sinleand A -type three-level atoms and two nonidentical two-level atoms,
which are known to exhibit dark states. We show that the effect of population trapping does not necessarily
require decoupling of the antisymmetric superposition from the dissipative interactions. We also find that the
vacuum-induced coherent coupling between the systems could be easily obsemetyga atoms. Our
analysis of the population trapping in two nonidentical atoms shows that the atoms can be driven into a
maximally entangled state which is completely decoupled from the dissipative interaction.

PACS numbgs): 32.80.Qk, 32.50td, 42.50.Gy, 42.50.Ar

I. INTRODUCTION electromagnetic cavityl], an optical waveguid¢2], or a
photonic band-gap materig8], which changes the density of
The control and manipulation of information transfer pro- modes of the vacuum field into which the system can emit.
cesses is a topic of much current interest because of the Another process that can modify spontaneous emission is
many possible applications in quantum computation, teleporguantum interference. It was predicted by Aganydlin a
tation, and quantum information theory. Ways of controllingdegenerate three-level atom and is now a well-known phe-
decoherence, and of producing maximum entanglement, ammenon that can lead to many interesting effects, such as
of particular importance. electromagnetically induced transpareiiy, lasing without
Information can be transferred between two systems bynversion[6], and the narrowing of optical transitiof,8].
coherent or incoherent interactions. The coherent interactioniBhe essential feature of quantum interference is the existence
can be stimulated by an external field such as a laser that carf quantum superposition states, which can be decoupled
induce coherent oscillations of the dipole moments of therom the coherent and incoherent interactions. These states,
systems, or can produce coherent superpositions of their ifkknown as dark or trapped states, were also predicted in other
ternal states. The incoherent interactions occur as spontanesnfigurations of three-level and multilevel atoms, as well as
ous emission from one system to the other resulting from thé& multiatom system§9,10], and many practical applications
coupling of the systems to the same modes of the vacuurhave been suggested, for example, in high-resolution laser
field. Coherent interactions lead to nondissipativevers-  spectroscopyl1l], laser cooling12], and quantum comput-
ible) transfers of population between systems, whereas trangg [13-15.
fers induced by spontaneous emission are dissipaine- Although the trapping states have the common property
versible. Whilst coherent processes are easy to control, théhat the population will stay in such a state for an extremely
spontaneous emission from two interacting systems leads fong time, they can, however, be implemented in different
losses(decoherengeas only a small part of the radiation ways. In a multilevel system the population can be trapped in
emitted by one system can be absorbed by the other. More linear superposition of two or more bare states, a dressed
over, these two processes are not complementary to eaatate corresponding to an eigenstate of the atoms plus exter-
other, since any coherent interaction is accompanied byal fields, or in some cases, in one of the excited states of the
spontaneous emission. Therefore, the problem of transferringystem. The starting point of the standard analysis of the
information in modified environments which suppress or re-origin of population trapping in a specific multilevel system
duce spontaneous emission has attracted considerable intés-a numerical or analytical solution for the populations, the
est in recent years. It has been shown that an effectiveoherences, or the fluorescence or absorption spgtéra
method to modify spontaneous emission is to place a radiaR0]. The results are then analyzed in terms of the parameters
ing system in a frequency-dependent reservoir such as af the system such as the damping rates, detunings, and Rabi

1050-2947/2000/62)/01341312)/$15.00 62013413-1 ©2000 The American Physical Society


https://core.ac.uk/display/14988762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UZMA AKRAM, Z. FICEK, AND S. SWAIN PHYSICAL REVIEW A 62013413

frequencies of the driving fields, and the origin of populationlate with different frequencies; andw,, and are coupled to
trapping is usually explored in terms of dressed states of ththe three-dimensional multimode electromagnetic field
system. whose modes are in a vacuum state. The total Hamiltonian

In this paper we demonstrate a qualitatively different ap-describing the energies of the systems, electromagnetic field
proach to the problem of population trapping. We show howand interactions, in the electric-dipole and RWA approxima-
the master equation of two coupled systems enables us t®mns, is composed of four terms
identify conditions for population trapping and to classify the
coherent and incoherent processes responsible for the trans- H=HstH,+Hg +Hg, 2
fer of population to a trapping state. Specifically, we exam- h
ine the dynamics of two arbitrary systems coupled througHN ere
th_e three-dir_nensional electromagnetic_ vacuum field and He=fhw,SI S, +hw,SI'S, 3)
driven by a single-mode coherent laser field. The systems are
represented by transition dipole moments which refer eithejs the Hamiltonian of the two bare systems,
to the two transitions in a single multilevel atom, or to the
individual transitions in two separate two-level atoms. The
master equation for two interacting systems can, of course, Hv:% hrwys
be solved directly in many cases and, as we have mentioned
above, the conditions for population trapping can be founds the Hamiltonian of the three-dimensional multimode elec-
from the final results. Nevertheless, in some cases such teomagnetic field,
direct method can be laborious and uninformative. Our ap-
proach provides a simple picture of the processes responsible
for the population trapping which enables us to obtain a bet-
ter understanding of the physics of this effect. Using an uni-
tary transformation of the dipole moments of the systems, wés the interaction of the systems with the coherent laser field,
rewrite the master equation in the representation of superp&nd
sition systems that are not coupled to each other through the
vacuum field, but can be coupled through coherent interac- p_ - {1 Ges(T1)ST + po- Gs(T2) S5 Jags+ H.c
tions. We find the general condition for the complete decou- ks
pling of one of the superpositions from the dissipative inter- (6)
actions and identify coherent processes that can transfer the . . . .
population between the superpositions. To our knowledge',S the mtgractlon of the bare systems with the _multlmode
the analysis of the conditions and processes responsible fgpcuum f'eld;Here“’L is the frequency of the driving laser
the transfer of the population between two coupled systemfield, ai; anday are the creation and annihilation operators
has not been previously presented in the literature. of a photon in the modek(s) with wave vectork and po-

In Sec. Il we give a general description of the masterarizations, the coefficientu;-g.(r;) is the coupling con-
equation for two arbitrary systems and then, in Sec. I, westant of the dipole momeni; with the mode functiomy(r;)
introduce a unitary transformation to the superposition sysof the three-dimensional multimode vacuum field, evaluated
tems. Finally, in Sec. IV we illustrate our approach for threeat the positiorr; of theith dipole, and
specific examples of two coupled systems, and obtain a num- B KT
ber of interesting results. For instance, our study of popula- Qi=pi- BN @
tion trapping in the system of two nonidentical atoms show
that the atoms can be driven into a maximally entangled st
which exhibits zero decoherence.

a1
aksaks+ By

5 @

H =—lﬁ[(Q S; +0,S))e' '+ H.c] (5
sL 2 1v1 2 "o

?s the Rabi frequency of theh system located at a point
A%nd k_ is the wave vector of the driving laser field. For a
single laser coupled to both systems the Rabi frequelties

and(), are related by
Il. MASTER EQUATION OF TWO

INTERACTING SYSTEMS iy COSO;

— ik -(rp—rq)
Q, Ql,ul cosaze , €]

We start with a quite general description of two interact-
ing systems, driven by a single-mode coherent laser field
amplitudeE and phasep. The systems, which we will call
bare systems, are represented by induced dipole moments

0\;\/here 0, is the angle betweep; and the polarization vector
of the laser fieldu;=|u;| is the magnitude of thith dipole
moment, and eXjk, - (r,—r4)] is the phase difference aris-
ing from different positions of the dipoles.

- _ + * Q-

M= paSy+ Sy A standard procedure employing the Born and Markoff
_ (1) approximations leads to a description of the dynamics of the
Mo=mS +p5 S, , systems in terms of the master equation for the reduced den-

sity operatorp. For two general systems, the master equation
wherey; is the dipole matrix element of thi¢h system, and can be written in the Lindblad form as
S" andS~ (i=1,2) are dipole raising and lowering opera- )
tors, respectively. The dipole moments are assumed to oscil- p=Lpgp+ Lyp, 9
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where the Liouville operatoL, 4 describes the nondissipa- is the vacuum-induced coupling between the systems. In
tive part of the evolution Egs. (13)-(16), k=1k|, ki=w;/c, kg=(w,+ w,)/2, and P
refers to the Cauchy principal value.
According to Eq(12), the parameters{™) can be consid-

i
Lnap=—7[H"p], 10 gred as a part of the frequencies and w,, and thus they
can be omitted or, in general, can be included into the dy-
and L the dissipative part namics by redefining the frequencies t0,=w;+ 48! ).

Therefore, we will not present calculations of the Lamb shift.
However, we are interested in the qualitative effects of the
interactions between the systems, and the role playeiﬁ)y
1 in their dynamics. It is evident from E§12) that the param-
(*) ] i
TS ST o+ pSTST — 25 St eter 6j,’ does not appear as a shift of the energies, but con-
2 1SS P45 S, =25, 051 ) tributes to the coherent coupling between the bare systems
1 [21]. Thus, the interaction with the vacuum field not only
— TS Sy p+pSiS; — 25, pSs) produces dissipative spontaneous emission but also leads to a
2 coherent coupling between the systems.
1 We may find the explicit form of the damping rates and
—-T,(SS, p+pSS, —2S,pSy), (11 the coherent coupling coefficient by evaluating the sums in
2°2 Eqgs.(13), (14), and(16). In the plane-wave representation of
, the three-dimensional multimode field in free spagg(r;)
with is defined as

1 +o— o - o
ﬁdp—_irl(slsllH'PSlSl_251P51)

H' =h(w+ & )STS] +hi(wpt+ 85)SSS, +h8{T)S) S

ck 1/2’\ -
gks(ri):(—) eKselk.ri- (17)

+4847S, S +785(S{ S, +S5°S)) 2megfi(2m)3

(+)/ e~ ot — ot ~
+h61,°(S; S, +S, S ) +Hgys 12 \here & IS the unit polarization vector of the field mode

dH. is g in Eq.(5). Th ficient (k,s). In the spherical representation the unit orthogonal po-
andHs is given in £q.(5). The coefficien larization vectorss,; andg,, may be taken af22]

FizwkE | i Gis(r)|28(k— ki) (i=1,2 (13 8,1=(—COSf COSeh, —cosd sing,sind),

is the spontaneous damping rate of thie system resulting &= (sin¢, —C0s¢,0), (18

from the coupling of the system to the vacuum field, and and the sum ovek can be changed into an integral

Ip=Tp= w% [+ Oks(r ) 1L 15 - GEs(r2) 18(K— ko), 5

1 2 © T 2@

—=> J k? ko' singdo| d¢, (19
(14) ks Cs=1Jo 0 0
is a generalizedcross) damping rate arising from the cou- Where & 6,¢) denote spherical coordinates. Substituting
pling of the bare systems through the vacuum field. TheEd-(19) into Egs.(13) and(14), and assuming that the dipole
terms proportional td";, represent an incoherent exchangeMoments are both linearly or both circularly polarized, we
of the excitation between the systems such that one of th@btaln_ the following explicit expressions for the spontaneous
systems spontaneously emits photons which are then af@mping rates:
sorbed by the other system.

i k3 2
The remaining parameters M i =
= Breoh (i=1,2), (20
(+) 1 ) 1 )
6 =P % | ti - Ges(T1) | e (159  and the cross-damping rate
— ™

represent a part of the Lamb shift, induced by the first-order F12—§ T, Sin(k_OrlZ)

[(pr po)— (paT12) (M2 T12)]

coupling in the Hamiltoniamdg, , of the ground and excited 4 Kor 12
states of the systems, while . o
(1 pm2) = 3(paT12) (M2 T12)]
. S 1 .
o) = o =PC X [ (T 1L - Gior2) e | cotkorsd) _ sintkoryo) } o1
(16) (Kor 12)? (Kor 12)°
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wherer 19= | ro— r1|' andi‘i a_ndf:l2 are unit vectors a|0ng the These two C(?uplings introduce Off-diagonal terms into the
ith dipole moment and the line connecting the two systemsnaster equation.
respectively. The traditional method of solving the master equation is
Using Eq.(19) and the explicit expressions fdf; and !0 calculate equations of motion for the density-matrix ele-
'y, the coherent coupling;,= 5(1;)_,_ 5(15) can be writen Ments and solv_e them by direct integration, or by a transfor-
as mation to easily solvable algebraic equations. Another
method is to diagonalize the Hamiltoni&tl, which leads to
NI the dressed states of the system, and next to represent the
- Pf , (22 dissipative part as spontaneous emission among these
dressed statd®8]. Here, we propose an alternative method
where we introduce a unitary transformation of the dipole
moments of the bare systems which diagonalizes the dissipa-
tive part of the master equation. In this approach the two
coupled systems are represented by linear superpositions,
) 3 which decay independently with significantly different rates,
dipole moments in the same atof(kryp) =1 and thendy, ;¢ hich cgn be Fc)oupled t);]rough goherent}i/nteractions. This
reduces to a form su_mlar to the Lamb shift. Whien,# 0, will allow us to identify the coherent processes which can
we can evaluate the integral by contour methods, and obtaifiyhster population between the two systems in the absence

of the dissipative interaction.

61—

o 1 1
gk F(krlz)( k—ko Ktk
whereF (krqp) =1"1,/yI'1I'5, andI'1, is given in Eq.(21).
The parametes;, depends orr,, and can have signifi-
cantly different values depending on whethear;,=0 or
kri,#0. For kr;,=0 which, for example, occurs for two

512:§ T, _[(,‘Ll_ﬁz)_(ﬁl.flz)(ﬁz.;lz)]w—orﬂ) We introduce new dipole operato& andS; that are
4 Kol 12 linear combinations of th&; andS; operators
(e m2) = 3(1-T12) (M2 T1))] Se=uS/+vS;,
. (26)
X{sm(korlz) , coskors) ] 23 Si=vSi -usy,
(Kor 1) (Kor12)°

whereu andv will be related through the condition
which is the familiar retarded dipole-dipole interaction be- 2 5
tween the systemf23-27. The parameter$2l) and (23) ul*+Jv[*=1, (27
depend on the mutual orientation of the dipole moments o
the systems and their separatiopy. For large separations
Kor 12 goes to infinity, and thel';,= §,,=0, independent of
the mutual orientation of the dipole moments. By contrast
for very small separationgmuch smaller than the optical
wavelength, kqr 1, goes to zero, and thdny,, and 8;, reduce

{Nhich ensures that the transition to the superposition opera-
tors is a unitary transformation. The operat&$ and S,
represent, respectively, symmetric and antisymmetric super-
positions of the dipole moments of the two bare systems. In
terms of the operator®6), and with a proper choice efand

v, we can rewrite the dissipative paftl) of the master

to equation in a form
Pio= VTalo( - o), @4 Lap=—Cod SIS; p+ pSI S: — 255 pS)
and ~Caa(SiS, p+pSIS, —25,pS))
3Tl —CodS{ Sy p PS¢ S, —2S,pSS)

S1p=———[ (1 p2) = 3(a-T1) (B2 T12)]. (25)
4(kor 12)° —Cad(Sy S p+pSiS; —25,pS:). (29
For this cased;, corresponds to the static dipole-dipole in- By simple comparison of coefficients in Eqdl1) and

teraction potential. The magnitude of the parame@4sand  (28), we can expres€,,, (m,n=s,a), u andv in terms of
(25 depends on the mutual orientation of the dipole mo-'; (j=1,2) andl';, as
ments and vanishes when they are perpendicular. For parallel

dipole moments the parameters attain their maximal values. 1 (F2+T54 20 1 ,\T1I,)
=5 , (29
2 r,+r,
Ill. SUPERPOSITION SYSTEMS
Equations(11) and (12) illustrate the significance of the Caa:( Tl =) Vrlr?y (30)
generalized damping rale;, and the interaction energy,. I+
These two parameters are not associated with individual sys-
tems but appear as coupling terms between the two systems. 1 (I'1—=To)(NI' =Ty
The parametel”;, introduces a coupling through the dissi- Csa= Cas_i r,+T, ' (31)

pative process of spontaneous emission, whjlentroduces
a coherent coupling through the nondissipative processand
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T, Caa= Csa_z C.s=0 regardless of the ratio betwedh and
U= ——, (32 I',. In this case the antisymmetric superpositidgcouples
r+r e p
1mr2 from the dissipative interactions and consequently does not
decay. This implies that spontaneous emission can be con-
1/1“ . . .
_ 2 (33) trolled and even suppressed by appropriately engineering the
NIVES W dissipative interactio’;, between the systems.

The above discussion shows that the basic feature of the

The transformed dissipative pd@8) of the master equa- two coupled systems is the existence of an antisymmetric
tion has a form similar to Eq(11). Of course, the real ad- superposition which can be decoupled from the dissipative
vantage of any unitary transformation of E@.1) appears interactions. The modification of the dissipative interactions
only if the transformed part is less complicated than the iniis an example of quantum interference between two coupled
tial one. Although in general the two formd1) and (28)  systems, in that the spontaneous emission from one of them
look similar, the advantage of the transformed fof8)  modifies the spontaneous emission from the other. This phe-
over(11) is obtained wherl,= I'1I", and/or the damping nomenon leads to symmetric and antisymmetric superposi-
rates of the original systems are equlll,€I',=I"). Ac- tions which may decay independently with significantly
cording to Eq.(21), I';,=+I';I", when the two dipole mo- modified rates. The decay rate of the antisymmetric superpo-
ments are parallel and separated by distances smaller thaition may be greatly reduced or even completely sup-
the optical wavelength. When the damping rates are equaressed. An interesting question arises as to whether the non-
C..=C,s=0, and then the symmetric and antisymmetric su-decaying antisymmetric superposition can still be coupled to
perpositions decay independently with the decay raids the coherent interactions. These interactions can coherently
+T'y,) and 3(I'—T',), respectively. In other words, fdf,  transfer population between the superpositions. In order to
=T, the transformatiori26) diagonalizes the dispersive part check this, we rewrite the Hamiltonia#’ in terms of theS;
of the master equation. Furthermore, Iif,=\T';I', then andS] operators as

- (T -Ty) |, (I =Ty |, VIil,
H ——ﬁ[(AL-FmA S, S, + AL—WA S, S, +2AF1 (S S, +S,S;)
2T, (I';—T>)
+h512—(s*s —S/S )+ (S!S, +S'S; )} \/—Ql+ VL0, (SE+S0)
r{+r, r+r, /Fl
+(VT20; =T Q)(S] +5,)], (34
|
where A = z(a,2 wl) andA =w — 2(w1+ wz) is the de- The third term in Eq(34) represents the interaction of the
tuning of the laser field from the average frequency of thesuperpositions with the driving laser field. We see that the
two dipole moments. symmetric superposition strongly couples to the laser field

The first term in Eq(34) arises from the HamiltoniaHly ~ with an effective Rabi frequency proportional £, +(,,
and shows that the energies of the symmetric and antisynwhereas the Rabi frequency of the antisymmetric superposi-
metric superpositions depend on the energy differeéhd®-  tion is proportional td);— ., and vanishes fof);=,. In
tween the bare systems and the damping rBtesMloreover, the latter case, the laser field couples only to the symmetric
the energy differencé introduces a coherent coupling be- superposition. According to E@8), this takes place only if
tween the superpositions. If the bare systems are identicahe dipole moments experience the same phase of the driving
(A=0 andI'{=T',) then the superpositions have the samefie|d.
energies and there is no contribution to the coherent interac- We can rewrite the Hamiltonia(84) in a more compact
tion from the HamiltoniarHs. form,

In the transformed representation the interactiyp be-
tween the two bare systems, given by the second termin Eq.  H'=—#[(A +A")S/ S, +(A —A')SIS,
(34), has two effects on the coherent dynamics of the sym-

metric and antisymmetric superpositions. The first is a shift +A(S( S, +8.S5)]

of the energies and the second is the coherent interaction "

between the superpositions. It is seen from &4) that the n

coherent interaction between the superpositions vanishes for zﬁ[(\/—ﬂﬁ \/_92)(8 +S5)
identical atoms withl';=T", and then the effect 06, is 1t

only the shift of the energies from their unperturbed values. +(VT04— \/1“_192)(5;4_5;)], (35)
It is interesting that the interactiofy, shifts the energies in

the opposite directions. where
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1 field and driven by a coherent laser field. These systems are
A'= 5 [T =T A=268151 1] (36 known to exhibit the population trapping phenomenon, that
1oz is, the system can be driven into a dark state from which the
and population is unable to leave.

A. Three-level V system

1
A= 2ANTTo+ 61T —T5)]. 3
¢ Iyt 1“2[ 2+ 0l =) 37 We consider a three-level atom in thé configuration

o ) ) ) composed of two nondegenerate excited leygjsand|2)
The physmal mterpre‘Fatlon of EQR5) is str'a.|ghtfor\/vardA’ and a single ground levéB). The levels|1) and|2) can
is a shift of the energies of the superposition systemsnd gecay to the ground level by spontaneous emission with de-
is the magnitude of the coherent coupling between the supey ratesl’; and I',, respectively, whereas transitions be-
positions. The parameters depend on the vacuum-inducggleen the excited levels are forbidden in the electric dipole
coherent coupling;,, which can strongly affect the coher- anproximation. The two interacting systems have dipole mo-
ent evolution of the systems. F@é%,#0 and identical bare mentsp, 3 and u,; sharing the same atomic ground lej/@)
systems the shifh’ #0, but can vanish for nonidentical bare 5,4 represented by the operat@§=(S;)"=|1)(3| and
systems. This occurs for S5 =(S;)"=1]2)(3|. In this three-level atom the superposi-
tion systems correspond to the symmetric and antisymmetric

81p= l (I'h—T7)A (38) superpositions of the atomic excited states
2 I,
1
In contrast to the shift\’, which is different from zero for |s)= —m(\/r_ﬂlH JT,[2)), (40)

identical systems, the coherent coupliig can be different
from zero only for nonidentical bare systems. However, even

. . . - . 1
in this case the coupling can vanish, which happens for al=——— (JT.11) = VT4 12)). 41
|>m(ﬁl>ﬂ|>) (41)
O1(I'1—T
A:—M, (39 The evolution of the system is described by a master
2\ I equation of the same type as E®) with the specific form of

the HamiltoniarH'. Since we have a single atom, the dipole
Thus, with the condition39) andI';,= I',I"; the antisym-  moments are at the same point=r,, the Rabi frequencies
metrical superposition of two nonidentical bare systemsyre related by
completely decouples from the interactions.

The master equation with the dissipative g@&) and the I', cosé,
Hamiltonian(35) gives an elegant description of the physics Q=0 T, c0s6,’ (42)

involved in the existence of coherent superpositions in the

interaction of two dipole systems, their dissipative interac-gnd the cross-damping term is given [}

tions with the vacuum fieldenvironmeny, and the coupling

to the coherent interactions. An important point is that the I'o=pylls, (43
master equation is quite general and can be applied to an

arbitrary system composed of two dipole moments. The conwherep=(u; - u1,) determines the mutual polarization of the
dition I"'y,=/I'1I', for the decoupling of the antisymmetric dipole moments of the two atomic transitions. For parallel
superposition from the dissipative interaction is valid for ar-dipole momentgp=1, whereagp=0 for perpendicular po-
bitrary dipole systems, whereas the presence of the cohereltrizations. In the former case, the antisymmetric state de-
interaction between the superpositions depends on specifgbuples from the dissipative interaction and consequently
examples of the dipole systems and appears only if the bargoes not decay. However, the population of this state can
systems are nonidentical with different energies and/or sporstill evolve in time due to the coherent coupling to the sym-
taneous damping rates. In the next section we will considemetric state. In order to show this in more detail, we derive
specific examples of two systems and discuss the conditiorthe equation of motion for the populatign, of the antisym-

of their couplings to coherent interactions. metric state, which fof’;=1",=T"is given by

IV. EXAMPLES paa=—(1—P)TpaatiAc(pas—psa)- (44)

Let us illustrate our considerations with three examples ofn the derivation of Eq(44), we have assumed equal Rabi
a quantum system which is composed of two interacting subfrequencies);=Q,, and hence the antisymmetric state is
systems. The three particular quantum systems we considaot driven by the laser field. This will allow us to identify
are a singlev-type three-level atom, a single-type three- excitation channels different from the laser field. The first
level atom, and two nonidentical two-level atoms. Each ofterm on the right-hand side of E¢44) arises from the dis-
the three systems is represented by two dipole momepts sipative interaction of the antisymmetric state with the
(system 1 and u, (system 2 coupled to the same vacuum vacuum, while the second term arises from the coherent in-
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1 T T T T T T

FIG. 1. The stationary population of the antisymmetric staje FIG. 2. The stationary population of the symmetric sfajeas a
as a function ofA, for I',=1, §,,=0.1, A=5, p=1, and differ- ~ function of A, for I';=1, 6;,=0.1, A=5, p=1, and different
ent Q:0=1 (solid line), Q=5 (dashed ling Q=10 (dashed- : Q=1 (solid ling), Q=5 (dashed ling Q=10 (dashed-dotted
dotted ling, Q=25 (dotted lind. All parameters are scaled 1,  line).
throughout the figures and, for simplicity, we take=1.

from the A =0 position would provide evidence of the

vacuum induced coherent interaction in #system. In Fig.

teraction with the symmetric state. Note that the interaction, \ . 1 -0 chosef;,=0.1, and even with such a large value
between the sqperpositions doe_s not involve the groundl statgy &1 no shift of the zero is visible. Cardimona and Stroud
and therefore is not accompanied 'by spontaneous emssm@l] have shown that the effect 8, on the dynamics of the

It A;=0 the ste_ady_—stgtg_ populatlcmaa_=(_), unlessp= 1. V system could be observed as a change in the fluorescence
and thenp,, retains its initial value. This is the population jiansity profile. However, the predicted changes are also
trapping effect, predicted by Agarwpd], that a degenerate oy small and could be difficult to observe. In Sec. IVB,

three—le_t\_/el atfotr;: eXC|t$d d'?'t'allly m_ho tthe gntt;]s_ymtmtetr;c su” however, we show thad;, can have an experimentally sig-
perposition of the excited levels will stay in this state 1or all pigeant effect on the dynamics of & system.

times. ForA.#0 and in the absence of the driving field, the " 1 o |50k of population in the state), see Fig. 2, can be

steady-state populatiqrn,,=0 regardless of the initial value. ,iorreted as a population trapping induced by the laser field
This implies that the coherent interaction destroys the popuzn the coherent interaction. However, the induced trapping

lati_?ﬁ tra;?pin? Ln thehstatba>. i in th state is not entirely thga) state but rather a linear superpo-
e role of the coherent coupling can reverse in the presg;;q, of the ground0) and|a) states. Only in the limit of a
ence of the driving field. In this case the coherent couplin

St driving field d the induced t i tate red
A, can transfer the population from the drivis) state to the rong crving Ne'c coes te incuced frapping state requces

; . e g to |a). An alternative way of viewing the process of trans-
undriven and nondecayirj@) state. This is shown in Fig. 1, 2) Y g P

: : ferring population from the states) to |a) is to employ the
where we plot the steady-state populatjep as a function dressed-atom model of the syst¢28]. The dressed atom
of A, for A=5,6,,=0.1 and different}. It is seen that the

approach provides a transparent picture of the physical pro-

antisymmetric state is populatgd by the presence of the CQspggeg responsible for population transfer and trapping phe-
herent coupling to the symmetric state. The amount of popuz j1ana In this model we use a fully quantum-mechanical

lation in &) increases with increasing® and attains the  yescrintion of the Hamiltoniahl’, which for the three-level
maximum valuep,,~1 for A, =0 and very strong driving system discussed here takes the form
fields.

The coherent transfer of the population between the su- H =Ho+V,_, (45)
perpositions can leavis) unpopulated despite that the state
is continuously driven by the laser field. We illustrate this inwhere
Fig. 2, where we plot the populatign as a function ofA
for A=5,8,,=0.1 and differenf). For A, =0 the population Ho=—#hAL(S{S; +S;S, ) +hoala (46)
pss= 0 regardless of the value 6. The coherent interaction o
between the superpositions transfers the population to th§ the Hamiltonian of the uncoupled system and the laser
state|a) leaving the statés) unpopulated. field, and

The appearance of the zero in the populatiQo results "
from the presence of the coherent coupling but the quan- _ te— 4 otey_ 0 otem o ot
tity which determines the position of the zero is the detuning VL= AA(S S +5.Ss) \/Eg(aLSS tSca) (49
A’. According to Eq.(36), for I'y=T", the detuningA’ de-
pends solely on the vacuum induced coherent coupling  is the interaction Hamiltonian which includes the coherent
Therefore, an experimental observation of a shift of the zer@oupling between the superposition states and the coupling
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of the symmetric state to the laser field. In E47), g is the
system-field coupling constant, aag (a/) is the annihila-
tion (creation operator for the driving field mode.

For A, =0 the HamiltonianH, has three degenerate

eigenstate$3,N), |a,N—1), and|s,N—1), where|i,N) is

the state with the atom in stafe andN photons present in
the driving laser mode. When we include the interachfn
the degeneracy is lifted, resulting in triplddressed states

1

|+.N>=ﬁ[—ala,N—l>+ls,N—1>—ﬁﬁ|3,N>],
|ON)=—28|a,N—1)+a|3N),
1
|—N)= E[—ala,N—l>—ls,N—1>— V2BI3N)],
(48)
with energies
EN,+:NU’L+Q,1
EN,OZNle (49)
EN'_ZNLL)L_Q,,

whereQ)'=A?+102 a=A/Q’, andB=Q/2Q".

The dressed statgg8) group into manifolds, each con-
taining three states. Neighboring manifolds are separated by

PHYSICAL REVIEW A 62013413

Thus, the coherent interaction between the superpositions
can have a constructive or destructive effect on the popula-
tion trapping in av-type three-level atom. In the absence of
the driving field the coupling has a destructive effect on the
population trapping in that it depopulates the stae On
the other hand, in the presence of the driving field the cou-
pling has a constructive effect on the population trapping
since it creates a trapping superposition state of the ground
and the nondecaying antisymmetric states.

B. Three-level A system

Here, we consider a three-levéttype atom composed of
a single upper level3) and two ground levelsl) and|2).
The two interacting systems have dipole momemis and
M3 sharing the same atomic upper ley@). After introduc-
ing superposition operator$! =(S;)"=|3)(s| and S;
=(S;)"=|3)(al, where|s) and|a) are the superposition
states of the same form as E¢40) and(41), we obtain the
master equation of the same type as Bj.with the dissi-
pative part(28) and the Hamiltoniar{35) given by

H'=—#{ (AL+A")S ST +(A —A")S, Sy

e, L TI0 :
FA(S S +8,8)) 5 =—=(S5+S,),

VIi+T5

(51

w_, while the states inside each manifold are separated by;iin I',=pyT.l, and we have assumed thét,=Q,
Q'/2. The dressed states are connected by transition dipole ¢y Note that the ordering of the superposition operators in
moments. It is easily verified that nonzero dipole MOmMentsy (51) s the reverse of that for the system.

occur only between states within neighboring manifolds. Us-

ing Eq. (48) and assuming thgi;3= po3= m, we find that
the transition dipole moments betwe&nN+1) (i=0,—,
+) and|O,N) are
(N+1,+|p/ON)=apu,
(N+1,0/ON)=0, (50

(N+1,—|p

ON)=—apu,

whereas the transition dipole momerts,0| /i, N—1) be-
tween|O,N) and the dressed statgsN— 1) of the manifold
below are equal to zero. It is apparent from EB0) that

Following our procedure, we analyze conditions for popu-
lation trapping using the equation of motion for the popula-
tion p,, of the antisymmetric state. For the system, the
equation of motion is of the following form:

20 .
Paa™ T+, (1=p)paz—iAc(pas—pPsa)-

(52

In the steady statep(,=0) with p#1 andA.=0 the
population in the upper statg;=0. Thus the stat8) is not
populated despite that is continuously driven by the laser. In
this case the population is entirely trapped in the antisym-
metric statg29]. This is the well-known coherent population

transitions to the statf),N) are allowed from the states of trapping effect predicted by Alzettat al. [30], and experi-

the manifold above, but are forbidden to the states of thenentally observed by Orriolg31] (see alsd32]). However,
manifold below. Therefore, the std@N) is a trapping state for p=1 and A,=0 the antisymmetrical state decouples
such that the population can be transferred into this state, bfitom the interactions, and then the steady-state population
cannot leave it. The transfers are allowed only wideA0,  pa3 is different from zero[33]. This shows that coherent
i.e., in the presence of the coherent coupling between thpopulation trapping is possible only in the presence of dissi-
symmetric and antisymmetric superpositions. Otherwise, fopative spontaneous emission from the upper level to the an-
A=0, the statd0,N) is completely decoupled from the re- tisymmetric superposition state. Moreover, coherent popula-
maining dressed states. In this case the three-level systetion trapping does not appear evempi# 1. According to Eq.
reduces to that equivalent to a two-level atom. We see fron52) this happens when.# 0. We see that, similar to thé

Eq. (48) that the dressed stat@N) is a linear superposition system, the coherent coupling destroys population trapping.

of the |a) and|3) states, and reduces to the stk for a
very strong driving field > A).

This is shown in Fig. 3, where we plot the steady-state popu-
lation p33 as a function ofA for A, =0, Q=5, §,=0.1,
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' ' ' all zero, but there are nonzero transition dipole moments
between|O,N) and the dressed statdsN—1) of the mani-
fold below, since

(N,Q u| =, N=1)=*apu,
(59
(N0l | ON—1)=0.

p33

Therefore, population is unable to flow into the stf@dN),
but can flow away from it. IA=0 thena=0, and the state
|O,N) completely decouples from the remaining states. For
A+#0 the statdO,N) is coupled to the remaining states, but
0 does not participate in the dynamics of the system because it
-20 -10 & 10 20 cannot be populated by transitions from the other states.
There is no trapping state among the dressed statgsas
FIG. 3. The stationary population of the upper st&? of a each state of a given manifold has nonzero transition dlpole
A-type atom as a function of the splitting for A, =0, Q=5, moments to the dressed states of the manifold below.
81,=0.1, p=0.5, and differentT’,: T',=1 (solid line), I',=50 We conclude that the process responsible for the popula-
(dashed ling tion trapping in theA system is different from that in the
system. In the former the trapping results from the dissipa-
p=0.5, and two different values df,. It is evident that the tive decay of the population into the antisymmetric state,
cancellation of the populatiops; appears only ah =0, i.e.,  whereas in the latter the trapping appears only if the antisym-
in the absence of the coherent coupling between the antisynmetric state is completely decoupled from the dissipative in-
metric and symmetric states. Fb,=I", the cancellation teraction. Moreover, in the presence of the coherent coupling
appears af\ =0, while forI';# 1", the effect appears at between the superposition states no population is trapped in a
specific state of thé\ system.

1T,-T,

B N W
2 ,_F 1F2 12

= (53 —
C. Two nonidentical two-level atoms

. . . In this section we consider two nonidentical atoms sepa-
Thus, forl" significantly different froml’,, the shift can be rated byr,,, coupled to each other via a retarded dipole-

large despite thab;, is very small. Therefore, the vacuum- . : . .
) . : dipole interaction and to the three-dimensional electromag-
induced coherent coupling can be experimentally observed in ’.. ) . ST
g : netic vacuum field, leading to dissipative spontaneous decay.

the A system as a shift of the zero of the populatios. h . deled level ith d
Note that in contrast to the system, where the effect & Eac atom IS modeted as a two-level system with groun
could be important for nearly degenerate transitif2ig iﬁ state|g;) (i=1,2) and excited statee;), connected by a

P y deg ' transition dipole momeny; . The atoms are assumed to have

the A system the effect could be observed with nondegener; L . .
ate transitions the transition frequencie®; and w, respectively, and the

It is important to note that, in contrast to thesystem, corresponding decay ratds; andI',. The master equation

there is no laser-induced population trapping in thesys- for this system involves all parameters appearing in E2f3.

: . o . and(35) with &;, being the retarded dipole-dipole interaction
tem. We can show this by calculating the transition dipole 23). As we have mentioned in Sec. Ill, the dipole-dipole

moments between the dressed states of the system. The p : .
. . interaction has two effects on the dynamics of the system.
cedure of calculating the dressed states ofAtsystem is the : . . . i
The interaction shifts the energies of the superposition sys-

same as for th&/ system. The only difference is that now . . o .
. o tems in opposite directions, and contributes to the coherent
the eigenvalues of the unperturbed Hamiltonidy are coupling between them. The latter happens only jf T
|3N—1), |a,N), |s,N), and the dressed states, wiph=1 Ip_ 9 . ) h PP S LTS 2
andT',=T,, are given by tis convenient to represent the superposition systems in
12 terms of the so-called collective states of the two-atom sys-
tem, which correspond to the symmetric and antisymmetric

|+,N)= i[—a|a,N)+|s,N)— V2B|3N-1)], superpositions of the atonj23,24. In this representation,
V2 the two-atom system is equivalent to a single four-level sys-
tem with a single ground stat8)=|g,)|g,), two intermedi-
|ON)=—28]a,N)+ a|3N—1), (54 ate(entangledl states
1 1
= N)=Gl-alaN)-IsN) V2B13N-1)]. |+) m(ﬂeﬁlgw VLoleolgr),  (56)
Although the dressed stat€$4) are similar to that of the 1
V system[Eq. (48)], there is a crucial difference in that the | =)= ——=(VT,le)|g.) —VT1ledgy)), (57
transition dipole moments betweénN-+1) and|0N) are I+,
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and a single upper stajé)=|e;)|e,). The entangled states
(56) and(57) are independent af, but depend on the damp-
ing ratesI'y andI',. For I'y=T", the states are maximally
entangled, whereas for eithéih,<I', or I'y>T",, the en-
tangled states reduce to the product stggsg;) (i#]). In

the basis of the collective states the superposition operator

S andsS] are of the following form:

S+=;

s F1+F2[2vF1F2|1)<+|—(F1—T2)|1><—|]+|+><0|,

(58)

~1

Sa = [2VTal 2| (= [+ (T =To)[1)(+[1+]=)(0].
1 2

(59

Before proceeding further, it is worth pointing out the physi-
cal significance of various terms in E¢58) and(59) to gain

PHYSICAL REVIEW A 62013413

1
[
Q.

FIG. 4. The stationary population of the entangled stat of
two nonidentical atoms fof)=5, §,,=10, p=1, andIl',=1, A

insight into the underlying dynamics of the system. We see" 1 (s0lid line), I';=2, A=0 (dashed ling
that there are two channels of excitation in the two-atom

system: The symmetrical channi)—|+)—|1), and the
antisymmetrical channdD)—|—)—|1). The channels are
independent for identical atoms, but become correlated wh
I'1#T,. It is interesting to note that unequal damping rate
correlate transitions only from the upper to the intermediat

can be populated even if it is decoupled from the dissipative
interaction and the driving field. The population is trans-
rred to| —) through the coherent couplint), which, simi-

e .
er to theV-type atom, leaves the other excited states com-
é)letely unpopulated. This is shown in Fig. 5, where we plot

states, while the transitions from the intermediate states t§'€ Stéady-state populations, , and py, for I'1=T5, A

the ground state remain independent.

Now, let us consider population trapping conditions in the

two-atom system and the mechanism of population transf

between the superpositions, especially between the entang|é

stateg56) and(57). As before, for the/ andA systems, we
assume thal';,=+I';I", and derive the equation of motion
for the population of the antisymmetric state), which is of
the following form:
(T1—Tp)? .
mplﬁlﬁc(m_ —p-+)

p__=

ot o,
2 \Ty(Tyrry

We see immediately that the antisymmetric stateé does

(60

not decay, but can be populated by spontaneous emissio

from the upper stat¢l) and also by the nondissipative in-
teraction with the staté+). The first condition is satisfied
only whenI';#I',. The last condition is satisfied only when
A.=0. Thus, the transfer of population to the state) does

not appear when the atoms are identical, but is possible fo

nonidentical atoms. In this case the upper state decays to

superposition of the intermediate states, but then only a par&

of the population, that part in the symmetric state), can
decay to the ground stat8).

In Fig. 4 we plot the steady-state population of the state

|—) as a function ofA for two different types of noniden-
tical atoms. In the first case the atoms have the same dam
ing rates {;=I",) but different transition frequencies\(

=1, 6,,=10, andQ=5. It is evident from Fig. 5 that for
A, = — 6,5 the states are not populated. In a similar way to
eV system, the population is trapped in a linear superpo-
fiion of the|0) and|—) states, and for a very strong field
can be completely transferred to the sfate. This is shown

in Fig. 6, where we plot the steady-state populafon  for

the same parameters as in Fig. 5, but diffef@nClearly, for

a strong driving field the population is completely transferred
to the statd —).

This result shows that we can relatively easily prepare
two atoms, with different transition frequencies, in a maxi-
mally entangled state. The closeness of the prepared state to
the ideal one is measured by the fidelyHereF is equal to
the obtained maximum population in the state). For ()

0.5 T T T

ations

=]

op

f

#0), while in the second case the atoms have the same FIG. 5. The stationary population of the entangled stateand

frequencies 4 =0) but different damping rated’¢#1I'5). It

the upper statél) of two nonidentical atoms fof ,=1, Q=5,

is seen from Fig. 4 that in both cases the antisymmetric staté=1, §,,=10, andp=1: p;, (solid line), p. . (dashed ling
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>T"; the fidelity of the prepared state is maximal, equal to 1. 1 paD . -
The system has the advantage that the maximally entangle ! " \\
state| —) is completely decoupled from the dissipative inter- os | /I TN |
action, i.e., is a decoherence-free state. H H \
AN
V. SUMMARY . L / '} E \\ 1
In this paper we have examined the dynamics of two syso: // I' || \‘

tems, coupled through the three-dimensional vacuum field 04 1 / e \ 7]
and driven by a single-mode laser field. The systems have / ,' \ \
been described in terms of the transition dipole moments, o, | / II ‘\ r\\\ ]
which refer either to two transitions in a single multilevel AR / RN
atom, or to the two transitions in two separate two-level at- J AN N
oms. We have shown that in each case the systems can k %% E— P m 20
represented by coherent symmetric and antisymmetric supel L

positions whose dynamics depend solely on the frequencies

of the dipole moments, their mutual polarizations, and the FIG. 6. The stationary population of the entangled stajeas a
phase difference arising from possible different positions ofunction of A, for I',=1, §;,=10, A=1, p=1, and different
the dipoles. For identical systems confined in a region muclf): Q=1 (solid line), Q=5 (dashed ling Q=20 (dashed-dotted
smaller than the resonant wavelength, so that the dipole mdne).

ments experience the same phase, the antisymmetric super-

position totally decouples from the dynamics and remainsnce of the dissipative coupling of the antisymmetric state to
unaccessible by any interactions. A small frequency differthe atomic upper state. A similar feature occurs in the system
ence between the dipole moments introduces a coherent coaf two nonidentical atoms. However, in this system, we also
pling between the superpositions, which can have a construshow that the atoms can be driven into a maximally en-
tive or destructive effect on the population trapping. In thetangled state which exhibits zero decoherence.

absence of the driving field the coupling destroys the popu-

lation trapping that depopuilate_s the dark superposition, wh!le ACKNOWLEDGMENTS
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