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Phase-dependent fluorescence linewidth narrowing in a three-level atom damped
by a finite-bandwidth squeezed vacuum

M. R. Ferguson, Z. Ficek, and B. J. Dalton
Department of Physics and Centre for Laser Science, The University of Queensland, St. Lucia, Queensland, Australia 4072
(Received 21 February 1997

We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom
damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a
strongly driven three-level cascade system, we derive the master equation of the system from which we obtain
simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the
bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When
the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only
the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi
frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the
squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi
sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only
the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to
the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence
of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual
two-level system that reveals exactly the noise distribution in the input squeezed vacuum.
[S1050-294@7)00111-X

PACS numbd(ps): 42.50.Dv, 32.80-t

I. INTRODUCTION phase-dependent effects even in three-level atoms difficult to
observe experimentally. Although the phase-dependent nar-
The radiative properties of atoms coupled to a squeezetbwing of the spectral lines has not yet been observed, it
vacuum field have been the subject of intense investigationgppears that this observation is not very far [dff]. The
in recent yearg1]. Most well known are the effects of major difficulty in any attempt to observe the phase-
squeezing phase-dependent inhibition of spontaneous emidependent spectral narrowing is that the present sources of
sion [2], the violation of the Boltzmann distribution of the the squeezed vacuum field generate a beam that can couple
populations of the atomic stat¢8,4], and modifications of only to a small fraction of the modes surrounding the atom.
multiphoton processef3—6]. Such modifications have re- It Nas been suggest¢ti8, 19 that the best way to overcome

cently been confirmed experimentally in the first nonclassicarh's_ dd|ff[|r(]:ulty |s_ttothplace (;he ?tor? msuiethan optical %‘?‘Vlgy:
spectroscopic experimef?]. In the experiment the linear nside the cavity theé mode structure of the vacuum field 1S
dramatically altered, allowing for an effective squeezed-

intensity dependence of the two-photon transition rate in & ! . ) ; .
vacuum-atom coupling to be achieved with an incoming

gascad_e .three-ltevetl a.ttcr:rr:hhas bé—:‘ert{ o.b?ervgtd.dThls 3epe Jueezed-light beam propagating under a small solid angle.
ence 1S in contrast wi € quadralic Intensity dependence Apart from this difficulty there is another important aspect

produced by C|.aS§IC§| light SOurces. i of the interaction that must be considered in any attempt to
The most intriguing squeezing-induced effect is thegpserve the phase dependence of the spectral linewidth nar-
phase-dependent inhibited spontaneous emission, first presying. The effect appears when another “reference phase”
dicted by Gardinef2]. He showed theoretically that the in- fie|d is added to the system. The introduction of a coherent
hibition of the atomic dlpOle moment could occur in Sponta'driving f|e|d |eads to the dependence of the spectra' |ine_
neous emission from a two-level atom damped by awidths on the relative phase of the squeezed vacuum and the
broadband squeezed vacuum field. With the addition of @riving field. As pointed out by Carmichaet al. [8,9] the
coherent driving field this modification can lead to phasephase dependence in the resonance fluorescence from a two-
dependent subnatural linewidths in the fluorescence and akevel atom is most evident for strong driving fields rather
sorption spectr@8—12). These subnatural linewidths lead to than for weak fields. However, for a strong driving field the
a partial suppression of spontaneous emission at certain freystem is no longer a two-level system. A two-level atom
guencies; of course the total amount of emission is undriven by a strong laser field is represented by a system of an
changed. Further work has demonstrated subnatural phasefinite set of the energy states, called dressed sfa&1].
dependent linewidths in the resonance fluorescence fromhe dressed states of the system group into doublets; the
three-level atomfl3-1§. Such effects might be more easily neighboring doublets are separated by the frequency of the
observed in three-level atoms since the driving field fre-driving field, whereas dressed states in each doublet are sepa-
guency can be distinguished more easily from the fluoresrated by the Rabi frequency of the driving field. When the
cence field. However, no significant narrowing of the spec-dressed system is coupled to a vacuum field the fluorescence
tral lines was predicted for three-level atoms, making thewill reveal the multilevel structure of the system. As pointed
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FIG. 1. Energy-level scheme for the three-level cascade con-

figuration. ' 7

out above, the strongest phase dependence of the spectr
linewidths has been predicted in a two-level system. The
multifrequency transitions between the dressed states dimin
ish the phase-dependent spectral narrowing. For example, fc
a two-level atom driven by a strong laser field only the cen-
tral component of the fluorescence spectrum can be signifi-
cantly narrowed8-12]. For a three-level atom driven by
two strong laser fields only a small narrowing can be ob-
served in the central component of the spectfi3+1§.
Recently, Parkingt al. [22] have proposed a system that
one might consider as a realization of a two-level dressec
system coupled to a squeezed vacuum inside an optical ca\
ity. In the model a two-level atom is located in a cavity
driven by a squeezed vacuum field. They have shown that ir
the strong coupling regime, in which the dipole coupling
strength between the atom and the cavity mode is muct® 1 dD) &=
larger than the bandwidth of the squeezed vacuum, the sys Y e
tem reveals the essential features of a two-lefgihgle-
frequency system. Since there is no coherent driving field FiG. 2. Energy-level diagrams ¢d) the undressed Hamiltonian,
the features, however, are not sensitive to the squeezinghd (b) the dressed system. The manifold,q) is separated from
phase. Significantly narrower fluorescence spectra haveéhe manifolds 6+ 1,=1) by the frequency, and from the mani-
however, been predicted by Swdif3] in two-level atom  folds (n+1,g+1) by the frequency, ; A is the frequency differ-
cases with a broadband squeezed vacuum with large phot@ncew;— w,.
numbers in the regime where the Rabi frequency and atomic
linewidth are comparable. In the three-level atom case suchqueezed vacuum problems by Yeoman and Baf@sit to
effects are also sedii3—-19 when the two transitions are calculate analytically the fluorescence spectrum of a three-
coupled to two independent squeezed vacuum fields. level cascade system driven by two coherent laser fields and
In this paper we present a modified version of the abovesoupled to a finite-bandwidth squeezed vacuum inside an
model. We consider a three-level atom in a cascade configwptical cavity. This approach has also recently been applied
ration driven by two coherent laser fields inside an opticalto calculate probe absorption spectra for driven three-level
cavity. We examine the situation of how the cavity, operat-systems in narrow-bandwidth squeezed vacuum fig2é%
ing in a weak coupling regime, driven by a finite-bandwidth We assume that the squeezed vacuum is the output of a non-
squeezed vacuum, not only recovers the essential features dégenerate parametric amplifier operating below threshold.
a two-level system, but also realizes a two-level system withThe nondegenerate parametric amplifier has proven to be the
phase dependent linewidths. Our proposal is based on thwost successful source of a squeezed vacuum field suitable
observation by Lewensteit al.[24] that by driving an atom for nonclassical atomic spectroscof87,2§. In the deriva-
with a strong laser field inside an optical cavity one cantion of the master equation, we first “dress” the atom with
dynamically change the transition rates between the dressdhe laser fields and next couple the resulting system to the
states, which can lead to the suppression of the spontaneonarrow-bandwidth squeezed vacuum and the cavity modes.
emission between some of the dressed states. The advantage of working in the dressed-atom picture is
In our model we use the master equation technique basedanifest in the simple analytical expressions for the spectral
on dressed-atom states, first applied to narrow-bandwidthnewidths and the fluorescence spectri26,27,28.

(n+1, g+1)

.

(n+1,¢-1) —

(n-1, q+1)
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This paper is organized as follows. In Sec. Il we present 1
the model and derive the equations of motion for the density |3,n,q)= ——(—iQ4|1n;+1n,+1)+Q|2n,n,+1)
matrix elements. In Sec. Ill we discuss the intensities and v2Q)
widths of the spectral features for free space and cavity situ-
ations. In Sec. IV, we present the fluorescence spectrum. We

summarize our results in Sec. V. A detailed derivation of the
master equation of the system is presented in the Appendixyiip energies

+iQ,|3,n1,n,)),

II. MODEL AND METHOD Elnq:Enq_ %ﬁﬂ,
We consider a three-level atom in the cascade configura-
tion (Fig. 1) driven by two strong single-mode laser fields of Eong=Eng» 2
frequenciesw; and w,, each of them coupled to one of the
two atomic transitions. The laser fields are on resonance. The Eang=Enq™ 3 150,

combined atom+ driving fields system can be represented
by the infinite number of energy stat¢29]. The states, where(); and (), are the Rabi frequencies of the driving
called dressed states of the system, group into manifoldgelds, () = ‘/Qzﬁggl g=n;—N,, N=n;+n,, with n; (n,)
composed of tripletgFig. 2), the number of photons in the laser mode of frequengy
(wp) and E,q is the energy of thenth manifold [see Eq.
(A15)]. We assume that the dressed system is coupled to all
other modes of the electromagnetic field, which are initially
in the vacuum state, and that a part of the vacuum modes,
—iQ5[3,n1,n)), those with frequencies around the laser frequengyare in
a sgqueezed vacuum state.

The time evolution of the dressed system in a squeezed
vacuum field centered around the frequengyis given by
the master equation, derived in the Appendix, as

1
|1n,q)= E(iﬂﬂl,nﬁ 1n,+1)+Q|2n,n,+1)

1
|2,n,q)=5(92|1,n1+1,n2+1>+Ql|3,n1,n2>), (1
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where S*[w;=(1/2) Q] and S [w;*(1/12) Q] ={S[w;= in Eqg. (A5). p, is the atom-laser modes density operator in
(112) Q1}* (i=1,2;1=0,1,2 are the raising and lowering the interaction picture. It is seen from E®) that any phase
operators for the transitions between the dressed states seppendence is associated with the decay fate of the
rated by the frequency;=(1/2)Q, I';; and I'p, are the |2)—|1) transition, which is a consequence of the choice of
spontaneous decay rates respectively of [Ble—|1) and  squeezed vacuum carrier frequensy=w,. Moreover, the
|3)—[2) transitions. The frequency-dependent parameters eyolution of the density matrix depends on the vacuum mode
N(w)=|D(w)|2N(w), dens!ty |D(w)|? an_d squeezing at different dressed- -state
(4)  transition frequencies. In free space the mode function is
IM(w)|=|D(w)[2M ()| slowly varying compgﬁed to the transn!on frequencies of the
atom and thugD (w)|“=1 after evaluation of EqA32). In
are the effective squeezing parameters modified by the mode cavity situation the mode function strongly depends on the
function of the reservoir. Expressions fdrandM are given  frequency[30,31]. In this casgD(w)|? can be identified as
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the Airy function of the cavity. The explicit form 4D (w)|?

. r ~
depends on the type of cavity. For the so-called one-mode  p22=~ g 1~ 2[N(w1— Q)+ ID(w1— 3 Q)[?]p1

cavity the function|D(w)|? can be approximated by a
Lorentzian peak centered on the cavity frequetgy For a
two-mode cavity,|D(w)|? can be approximated by two
Lorentzians centered oa.*+ 5., whered, is the displace-
ment of the cavity peaks from the central frequency.

The master equatio(B) allows us to calculate the popu-
lations of the dressed states and coherences. Taking the di-
agonal matrix elements of each side of E8). for dressed-
atom statedi,n,q) and summing oven,q, we obtain the

following equations of motion for the populations of the P33~

dressed states:
. r N 1 L 2
pu=-7g {2[N(w1— 3 Q)+ |D(w1— 3 Q)|*1p11
+[N(w;+ Q) +N(w;- Q)+ [D(wy - Q)2
—2|M(@1+0)|cos ¢clpyst|D(wp— Q) [2pyy

—2N(w1— 3 Q) pa—2|D(wp+ 1 Q)|p,,

+2[N(wy+ 3 Q)+ N(w;— £ Q) ]ps
+2[|D(wa+ 3 Q)2+ |D(wz— 3 Q)|?]p22

—2[N(wy+ Q)+ |D(w1+ £ Q)|?]pa3,

I —_ _
—§{—[N(wl+Q)+N(wl—Q)+|D(w1—Q)|2

—2|M(w1+0)|cospslprr—|D(w,— 0)[%py
—2[N(w1+ £ Q)1po—2|D(w,— 3 Q)%p2;
+2[N(w1+ 3 Q)+|D(w;+ 3 Q)?]pa
+[N(w1+ Q) +N(w,— Q) +|D(w;+0)|?

—2|M(w;—Q)|cospslpsst |D(wo— Q) [%pagt, (5)

wherepji =2 Ping.ing- 1aKing the matrix elements of each

—[N(@1+Q)+N(w;— Q) +|D(w;+Q)? side of Eq.(3) between dressed-atom statéisn,q| and
- |j,n—1,g+1) and summing oven,q, we obtain the follow-
—2|M(w;—Q)|cos ¢slpzs—|D(w+Q)|%psg, ing equations of motion for the coherences between the

dressed states:

. r ~ ~ _ -
P12~ g {3 [2N(@1) +|D(w1)|?+2|M(w1)|cosps] +[2N(w;— 5 Q) +N(w;+ 3 Q) +[D(w1— 3 Q)|?]

+ 1 [N(0;+ Q)+ N(w;— Q) +|D(w;— Q)|2—2|M(0;+Q)|cosps] + 3[|D(w,)[?+2|D(w,— £ Q)2

+2|D(wp+ 3 Q)2+ [D(w— Q)2 p1o— tM(w1— 2 Q)T pys,

: r ~ ~ ~ ~
P23=— g{%[2N(w1)+|D(w1)|2+2|M(w1)|003Ps]+[2N(w1+ 2Q)+N(01— 3 D) +|D(w1+ 3 D)[?]

+ 1 [N(01+ Q) +N(w;— Q) +|D(w;+ Q)2 2|M(w;+Q)|cosps] + 3[|D(w,)[?+2|D(w— £ Q)

+2|D(wa+ 3 Q)2+ |D(wa+Q)[?]}pos— %M*(wl_ 5Ty,

. r ~ _ _ -
P13= " g (2[2N(w1) +|D(@1)|?+2|M(w1)|cosps]+[N(w;— 5 Q)+ N(w1+ 3 Q) +|D(w;— 3 Q)|?+|D(w;+ 3 Q)|?]

+{2[2N(0;~ Q)]+ 2N(w;+ Q) +|D(w;— Q)[>+|D(w;+Q)|2—4|M(w,+ Q)|cosps}

+2{|D(w2)[*+ 3 [|D(wo+ Q)]+ |D(w,— Q) [!TDp1a,

(6)

wherepij =2 ,4Ping,jn—1q+1 and the remaining equations of motion for the coherepgeé = 1,2,3) obey the same equations
of motion as the populations of the dressed sté®&sFor simplicity, we have assumed equal decay rdigsr1",,=I", and
equal Rabi frequencie$),;= (), in Egs.(5) and(6). The coherences;,(p»1) andp,s(p3,) correspond to the spectral lines at
frequenciesv; + 3 Q(w;— 3 Q), the coherences,3(p3,) correspond to the lines at; + Q(w;— ), whereas the coherences
pii (i=1,2,3) correspond to the central component of the spectrum. In general, the spectrum is composed of R4, lines

the central and two pairs of sidebands locatedvat 3 Q and w;+ Q).

It is interesting to note from Ed5) that the time evolution of the populations of the dressed states depends on the Airy
function of the cavity centered only at the dressed-state resonances corresponding to the inner and outer Rabi sidebands.
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Therefore, in order to observe any fluorescence from the system, the cavity linewidth should be, at least, comparable to the
inner Rabi sidebands frequency, or one should use a two-mode cavity with the modes centered on either the inner or outer Rabi
sidebands. This suggests that the dynamics of the system coupled to the cavity modes could be completely different from that
in free space, wher® (w)|?=1 for all relevantw. This also suggests that a two-mode rather than one-mode squeezed vacuum
would be most useful in any attempt to observe the squeezing effects on the fluorescence spectrum. Therefore, we consider, as
an input squeezed vacuum, the output of a nondegenerate parametric amplifier for which the squeezing parah3ers are

e bj—bZ [ 1 1 s 1 1
w;)= - - y
' 8 (05— = 8)?+Db; (05— 0= 8)°+0]| [ (ws—wi+8)°+b; (w5 w;+39)%+b]
M (@) bs_bi[ - + - * - * - @
wi)| = [}
! 8 (ws— wj— 6%+ b>2( (ws—wi—53)2+b§ (ws—wi+5s)2+b>2( (wg— wi+ 55)2+b§
|
where wg is the carrier frequency of the squeezed vacuum r
and &5 is the displacement from the carrier frequency at Y11= Y127 Y137 Y217 ¥23= V31T V32= V33T 4
which the vacuum is maximally squeezed. The squeezing (10

parameters are composed of two Lorentzians, with band- )
. . 22 .
widths given by
In order to find the stationary populations of the dressed
b _Y_ B states and the linewidths of the spectral features, we have to
2 ' g solve respectively the system of three coupled equatidns
(8) and the system of six coupled equatidbs

_7

b +]el,

A. Free-space situation
First, assume that the dressed-atom system is coupled to
he vacuum modes in free space. In this case
Dlw,=(1/2) Q]|?=1, and it is easy to find from E¢3) that
n:e dressed states are equally populated with

where vy is the cavity damping rate and| is the effective
pump intensity. The maximum squeezing occurs at th%
threshold for parametric oscillation, i.e., fg— y/2. We
assume that the bandwidths of the nondegenerate parametP
amplifier can be much smaller than the Rabi frequencies of _ _ g

the driving fields. This ensures that if the squeezed vacuum P11(®) = p2A ) = p3d(*) = 3 - (1D
is coupled to a particular frequenay;, there is not a sig-
nificant contribution at another frequency removed from it
by the order of a Rabi frequency.

Interestingly, the stationary populations are independent of
squeezing parameters and are the same for a broadband as
well as a narrow-band squeezed vacuum. From Bd5.and

(11), we find that the spectrum is composed of five lines with
IIl. INTENSITIES AND WIDTHS the intensities

OF THE SPECTRAL FEATURES

According to the dressed-atom model of Cohen-
Tannoudji and Reynau®1,29 the fluorescence spectrum is
associated with transitions between dressed states of two
neighboring manifolds and the frequencies of the spectral Glw+10 _F_T
. : . . w13 )— y (12)
lines are given by the transition frequencies E§17). The 6
intensities of the spectral lines are proportional to the total
number of transitions between the corresponding dressed I'r
states. Thus, the stationary intensiti@jsw, + (1/2) Q] of the Glw,20)= 12°
spectral lines are given by the product of the upper state
population p;; and the transition rate y;, i.e., The intensity of the inelastic central spectral line has been
G(wy) =7yijpii(*), where 7 is an experimental term that determined by subtracting from the total weight of the cen-
depends on the atom-laser-field interaction time and is agral peak the weight of the coherent component, which is
sumed large compared 1o 2. given by

The transition rates are defined by Fermi's golden rule as

Gel( ;) = 7[d11p11(%) + dpp oo ) + dazpas(0) 12,

yi;=Tul(i,n,q[S/]j,n—19-1)P (13)

+T,)(i,n,q|SS]j.n— 10— 1) (99  whered;;=(j,n—1,g+1|uli,n,q) are the transition dipole
moments between the dressed states.
Using Eq.(A14), we find that the transition rates between the The linewidths of the spectral features, however, depend
dressed statd$,n,q) and|j,n—1,+1) are on the squeezing parameters and in particular on the band-

I'r
Ginell@1) = ?v
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width of the squeezed vacuum. In order to determine the Interestingly, the spectral linewidths are independent of
widths of the spectral lines, we follow the approach ofthe squeezing phase and all are broadened due to the pres-
Cohen-Tannoudji and Reynayd1], that the linewidths of ence of thermal photons at the frequencies- 2 Q. How-

the spectral components are given by the eigenvalues of tr@,er, for squeezing frequencies centered araupd Q, i.e.,
coupled equations of motion for the coherenpgsand p;; . N(w;=Q)=N, [M(w,+Q)|=|M|, |D[w;*(1/2)Q]]2=1

For the central component of the spectrum, we find that the,q4 the other squeezing parameters equal to zero, we find

eigenvalues of Eq(5) for a broadband squeezed vacuum, ya; the width of the central spectral peak is given by
where N[w;=(112) Q]=N, |[M[w;=(1/2)Q]|=|M|, and

the free-space situation whe@[ w; = (1/2) Q]|%2=1, are f,=0
b;=0,
' f,=3T, (20
b=% (N+1)T, (14)

f3=3% (2N+3—2|M|cospl)T",
bs=% (3N+3—2|M|cospy)T.
where, as before, the eigenvalfsecorresponds to the elastic
The eigenvalud; corresponds to the elastic component of component of the spectrum, while the eigenvalfieandf;
the spectrum, while the eigenvaluesandb; correspond to  correspond to the inelastic components at the frequency
the inelastic components at the frequeney. Similarly, for the sideband ab,* % Q we find that the line-
The linewidth of the inner sidebandsat+ ; ) is given  width is given by
by the damping rate of the coherenggs and p,s,
1
71=5 (N+5—|M|cospy)T, (21)
7=8(N+1=z|[M]T, (15
. . . . for th Rabi si *+Q the li idth i
and similarly, the linewidth of the outer sidebandsvat- ) and for the outer Rabi sideband @ e linewidth is
is given by the damping rate of the coherenpgsandpsq, Bi=1 (N+4—|M|coseo)T. 22)
— 1
Bo=(N+1+ 3 |M|cospy)T". (16 In this situation,all spectral lines are phase dependent and,
It is seen from Eqs(14)—(16) that only the central spectral " contrast to the broadband case, the spectral lines can be

peak and the outer Rabi sideband are phase dependent, Wﬂﬁrrowed below the_ordinary vacuum level. It happens f_or all
the inner Rabi sideband dependent only on the degree 6(jalues OfN and QDS._O' The situation of the_atom belng_
squeezingM|. It is worth noting the phase difference be- a_m['z/led_k())y.anEordmla;y vlaé:uur?].c?n be Iobpam;zd bydshettmg
tween the outer Rabi sidebands and the central spectral corFul-_![h = |rg lqs.( )—( '2 whic | ;esmtjhts n dlntGWI .t Sd .
ponen. T woinesar o of phaseiresuing nony 2 118 S25°15, SO7es edba) 1 tose Serrmned
one of the two being narrowed for a particular choice of:~ "= '
phase, while the other is broadened. are not phase dependent.

If the squeezed vacuum has a finite bandwidth, such that
the squeezing is confined to only specific modes, the line- B. Cavity situation
widths of the spectral features and their phase properties are when the dressed system is located inside an optical cav-
significantly different from the above for the broadband casejty the spectral intensities and linewidths differ significantly
For narrow squeezed vacuum modes centered aroungym those derived previously for the free-space situation.
0153Q, N(wo;=3Q)=N, [M(w;+3Q)=|M|, and the Firstly, we consider a two-mode narrow-bandwidth cavity
other squeezing parameters are zero. In this case the staticand a two-mode narrow-bandwidth squeezed vacuum, both
ary populations of the dressed states are given by(El),  centered onv; + % Q). From Eqgs(5) and(6), we find that in
and the widths of the spectral lines are this case the populations and coherences, similar to those in
free space, are independent of the squeezing phase. The sta-

=0, tionary populations of the dressed states are dependent on the
ny=2 (N+1)T, an thermal fluctuationdN, and are given by
N
ng=3(N+1)I PLIT PTG 3
for the central component,
~ N+1
=5 (BN+5) [+ |M|T (18) P22=3Nv 1

for the inner Rabi sidebands, and ~ 1
whereN=N(w;* 3 Q).

Bn=3%(N+4)T (19 Similarly, we find from Eq.(6) that the linewidths of the
central component and the outer Rabi sidebands depend only
for the outer Rabi sidebands. on N and are given by
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0.8

C]_:O,

c,=7(N+1)T, (24) K

)
0.6

c3=:(BN+1)I'

for the central component and

0.4

Be=3 (N+1)T (29)

Central linewidth (in units of I

for the outer Rabi sidebands. The inner Rabi sidebands, how-
ever, are composed of two lines of the same frequency but
different linewidth, dependent on the squeezing correlations
M| as

N
o

776:%(3N+]_i2||\/||)]"_ (26) o 02 0.4 0.6 08 1
N
When the two-mode cavity and the two-mode squeezed o T
vacuum are centered on the outer Rabi sidebands atQ, FIG. 3. Linewidth of the central spectral componéntunits of

. . . . I') as a function oN for the three different squeezed reservoies:
the stationary populations are independent of the squeezi - .

. oadband squeezed vacuum-), (b) finite-bandwidth squeezed
parameters and are given by

vacuum withN(w;=Q)=N and |M(w;=Q)|=|M| (---) in free

p11=pas= 4 space, andc) finite-bandwidth squeezed vacuum in a cavity with
nohssTe (27)  |D(w1+0)|? and|D(w)|2=0 for all othere (---). The solid line
p2=0 represents the normal vacuum linewidth units of I').

Then we find that the intensities of the spectral lines are large squeezing whep,=0. It is interesting to note from
Egs.(29) and(30) that the linewidths of the spectral features

Ginel(@1)= d reveal exactly the noise distribution in the input squeezed
nel BT g vacuum. It is easy to show from E@A5) that the fluctua-
. tions in the quadrature components of the input squeezed
G(w;*30)=0, (28)  vacuum are
G )= I'r
(01 20)=—2-. F=((Aa,)?)= 5(N+ 3 —|M|cospy). (31

In this case, the modified environment results in the spec- ) ) . )
trum effectively being reduced to three lines. With the cavity Therefore, the potential for narrowing of the spectral lines is
modes maximized at the frequena@y+ ) we see from Eqs. Not impaired in th.e presence of a two-mode cavity cer_1tere_d
(6) and (27) that the population,, decouples from the re- ©Nn the outer Rabi sidebands. We may conclude that in this
maining equations of motion, leaving the population distrib-
uted between the staté3,n,q) and|1,n,q) only. Thus, in 3
this situation the dressed system reduces to that of a driven
two-level atom and we would only expect to observe three
spectral lines in the fluorescent spectra: the central peak and
the outer Rabi sidebands at = ().

The width of the spectral lines is given by the eigenvalues
of the equations of motion. For the central peak

0.6

Inner Rabi linewidth (in units of )
0.4

c,=0,
! (29)
C,=3(N+ 3 —[M|cospy)I’ 3
and for the outer Rabi sideband
ﬂC:%(N‘F %_|M|COSKPS)F. (30) 0 “"0’.2" 77777777 c;.; 77777777 ;J.-6 777777777 0 js-"“m”}

Clearly, incorporating into the system a two-mode cavity N _ I o
centered on the outer Rabi sidebands can lead to narrowinangr:(;:O‘:]' (I)_;’r\llefv(\)/lrdtt::eo: tge d!;g?énsz' lee::r?;hsgrlftg)f frzl?es
of all the spectral lines to zero faps=0 andN>1. The unc wo d queez VOIS fint

- . i 1 bandwidth squeezed vacuum withN(w;=Q)=N and
latter condition leads to the approximatigM|~N+ 3,  |M(w,+Q)|=|M| () in free space andb) in a cavity with

which can be observed from the inequality directly following |D(w,=+Q)|? and|D(w)|?=0 for all otherw (---). The solid line
Eq. (A5); thus the linewidths approach zero in the limit of represents the normal vacuum linewidth units of I').
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\
0.01

Sip(@) (units 7)

5x1073

- Quter Rabi linewidth (in units of I)
0.5

N (w=wy)/T

FIG. 5. Linewidth of the outer Rabi sidebafia units ofI') as FIG. 7. Resonance fluorescence speéinaunits of 7) vs the
a function of N for the three different squeezed reservoifa) frequency detunings— w; (in units of ) for the three-level atom
broadband squeezed vacuuks-), (b) finite bandwidth squeezed gamped by a finite bandwidth squeezed vacuum in free space,
vacuum withN(w;*=Q)=N and [M(w,+Q)|=|M| (---) in free whereN(w; =0Q)=N, |M(w;+Q)|=|M|, and|D(w)|2=1, with
space, andc) in a cavity with| D(w, = Q)|? and|D(w)[*=0 forall  N=0.5 O=10T, [M|=[N(N+1)]"2 ande.=0 (—), m (~).
otherw (--+). The solid line represents the normal vacuum linewidth

(in units of I'). taneous emission outside the finite frequency interwats()

results in less noise present at the fluorescent frequencies,
case each of the transitions individually couples to the inputhus allowing further reduction of the linewidths. Indeed, it
squeezed vacuum and acts as a single two-level system wittan be seen that in the limit of large squeezing the linewidth
phase-dependent noise. can be reduced by 100%.

To conclude our discussion of the spectral linewidths in  The width of the spectral Rabi sidebandsaat 3 Q) is

the free space and cavity situations, we plot in Figs. 3—5 the)otted in Fig. 4 for the finite-bandwidth squeezed vacuum as
linewidth of the spectral lines as a function Nfand three there was no phase dependence for a broadband squeezed
different squeezed vacua. Figure 3 shows the width of th§acuum, only a dependence on thegreeof squeezingM|,
central spectral line. In the case of the system interactingind the spectral line is not present when the atom is coupled
with a broadband squeezed vacuum, line narrowing ofo a squeezed vacuum in a cavity. We see from Fig. 4 that in
~13% below the normal vacuum width is possible for smallthe limit of large squeezing a linewidth reduction of up to
values ofN. However, whenN approaches unity the line- 10% is possible.
width becomes broader than the normal vacuum width. For Finally, for the Rabi sidebands at+ () we see from Fig.
the finite bandwidth squeezed vacuum case it can be seenthat when the atom is damped by a broadband squeezed
that in the limit of large squeezing, i.e., Bs—~, a reduc-
tion of ~33% below the normal vacuum linewidth is pos-
sible. Finally, for the atom in a cavity, the reduction of spon-

0.015

S, (@) (units 7)
0.5

0.01

Sip(w) (units 7)

£x1073

(w=w,)/T

FIG. 8. Resonance fluorescence spe¢inaunits of 7) vs the
frequency detuningo— w4 (in units of I') for the three-level atom
damped by a finite bandwidth squeezed vacuum in a cavity both

FIG. 6. Resonance fluorescence spe¢imaunits of 7) vs the  centered on the outer Rabi sideband whé¥é¢w;+=Q)=N,
frequency detuningo— w, (in units of I') for the three-level atom |[M(w;=Q)|=|M|, |D(w;=0)[?=1, and |D(w)|?=0 for all
damped by a broadband squeezed vacuum Qitil0l', N=0.5, other w, with N=0.5, Q=10TI, |[M|=[N(N+1)]*?, and =0
IM[=[N(N+1)]" and ;=0 (—), (). (=), (=)

o
-15

(w=w,)/T
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vacuum only a limited amount of line reduction is possibletwo resonant laser fields and damped by a finite-bandwidth
for small N. This reduction is lost whei approaches 0.1, squeezed vacuum. We have assumed that the bandwidth of
being replaced with a linearly increasing linewidth. If the the squeezing is much smaller than the Rabi frequency of the
atom is coupled by a narrow-bandwith squeezed vacuurdriving fields, but much larger than the natural atomic line-
maximized atw, = () we see that in the limit of large squeez- width, in order to ensure that the behavior of the reduced
ing it is possible to narrow the linewidth by 12%. However, density operator for the system is Markovian. We derived the
if the atom is then placed in a cavity, it is possible to reducemaster equation in the dressed-atom basis, which removes
the linewidth by 100% below the normal vacuum linewidth the fast-time-scale Rabi oscillations from the interaction pic-

due to the suppression of spontaneous emission. ture. The system now evolves on a much longer time scale,
allowing us to consider finite-bandwidth reservoir effects us-
IV. FLUORESCENCE SPECTRUM ing the Markoff approximation.

We specifically examined the Cascade system where the
Having available the intensities of the spectral lines andsqueezed vacuum carrier frequency was equal to the dressed-
their widths, we can write down the entire spectrum of theatom frequency,ws=w;. Assuming the source of the
fluorescent field emitted at tHe)«|1) transition as squeezed vacuum is a nondegenerate parametric amplifier
(NDPA) operating below the threshold, we have found that
N all spectral lines show a dependence on the squeezing phase
(0—w1)°+\° and can be significantly narrowed below the ordinary
vacuum level. The phase dependence and the narrowing
nlm strongly depend on the frequency at which the squeezing and
(0—wi+ 3 Q)2+ 7 cavity modes are centered. When the system interacts with a
narrow-bandwidth squeezed vacuum in free space and the
nl squeezed modes are centered on the inner Rabi sidebands the
(0—w1— L Q)2+ 12 spectrum exhibits five lines that are completely independent
roe U of the squeezing phase. Matching the squeezing modes to the
Bl outer Rabi sidebands results in all the spectral lines depen-
(0— o+ 021 B2 dent on the phase with the possibility of a 33% reduction of
1 the spectral linewidths below the vacuum level.
Bl Placing the system in a cavity results in the further nar-
(0—w,— Q)2+ 32’ (32 rowin_g of the spect_ral Iine_s due_to the modification of 'ghe
density of modes interacting with the atom. Along with
avoiding the experimentally difficult situation of squeezing

where\ refers to the linewidth of the central peak, andnd ) - 4
B are the linewidths of the inner and outerpRabi z%ebandsa” modes coupled to the atom, the cavity modifies the atomic

respectively. Substituting the linewidths into E82) along Spontaneous rates, which can even reduce the three-level

with the intensities of the spectral features calculated earliefom dynamics to th"’.‘t chgracterlstlc of a twq—level atom. As
and assuming thdt ;= I',, and Q=10T" we are able to plot 2 COnsequence, the linewidths of the peaks in the fluorescent

the fluorescent spectra for the atom damped by a variety pectra are reduced compared to the free-space situation.

reservoirs in order to emphasize the dependency of the spe g?éefgr%;’tw;n rrc?ucc:?i\c?rt\ycr)?otﬁgss?)rgclt?a? ﬁgé’gﬁzego\g?glgm
tra on squeezing phase and the squeezing bandwidth. In Fig.” . © . . X : ; '
q gp d 9 sulting in the linewidths being reduced to zero, with the

6 we plot the fluorescent spectrum for an atom damped by ? . . -
broadband squeezed vacuum with two different phasegpproprlate choice of phase and in the limit of large squeez-

¢s=0 and. It is apparent that for the different valuesof

only the outer Rabi sideband and the central peak are af-
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Placing the system in a two-mode cavity with the modes

centered on the outer sidebands results in the loss of the
inner Rabi sidebands from the fluorescent spectrum. This is APPENDIX A: DERIVATION
shown in Fig. 8, and indicates that inside the cavity the sys- OF THE MASTER EQUATION (3)
tem effectively behaves as a two-level system. In this case all
spectral lines are very narrow and phase dependent. The Iing-

: ; T o}
widths can even be reduced to zero in the limit of large

S(w)=Gjpel( @1)

+G(w;—39Q)

+G(wi1+3Q)

+G(w;+Q)
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The time evolution of a system interacting with a reser-
ir is given by the equation of motion for the reduced den-
sity operatorp. In the interaction picture, and after the Born

squeezing. approximation, the master equation is given[B¥]
V. SUMMARY ap (1) 1 t
—=—— | Tre[V,(1),[V,(t"),pr(0)p,(t")]]dt’,
In this paper we have examined the phase dependence of dt h? fo RIVI(D. V(1) pr(0)pi (1) 1]

the fluorescence spectrum of a three-level atom driven by (A1)
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whereV(t) is the interaction Hamiltonian for the system and  The couplingV,(t) can be written as a linear combination
reservoir, which in the rotating wave approximation is givenof the products of the syste, and reservoilR, operators,

by

i Vi=2 Sy(HRy(1), (A6)
Vi) =542 [QS] (Day, (1) = () al (DS, (1 ?

+Q75; (Hay () — () *al(hS; ()], (A2) whereS,=S;” andR,=+ 1,003} exp(zin,) (j=1,2).
Rewriting Eg. (A1) in terms of Eqg.(A6), expanding the

We specifically assume the system is a three-level atom iﬁgléglewc:?nrgutﬁ;?r, and obeying the cyclic properties of the

the cascade configuratiaiffig. 1) where S™(t) [S (t)] is
the raising[lowering] operator of theth transition (=1,2).

The vacuum Rabi frequencigs(’) and Q{?) are given by in 2P
,ﬁTzé (Ra(1)[Sa(t),pi(0)]

1/2
Qg\l):(ﬁvzré)\)(%) D(w,) (A3) s [
- IS J dt(Ry(B)Ry(t— 7))
i ap Jo
d
an X[Sa(1),Sp(t—7)p(t—7)]
2w 1/2
@_(~ . a A
0= (pmz €)) m) D(wy), (Ad)

1 t
) fodt<Rb<t— 7Ra(1)
whereé, is the unit polarization vectoyi,, and i, are the :

matrix elements for the transition dipole moments, respec-

tively, for the |2)«—|1) and |3)«<|2) transitions. The X[Sp(t=7)pi(t=17),S4(1)], (A7)
frequency-dependent parame2(w,) represents the mode
function at the position of the atofi80,31]. The system is
coupled to a multimode reservoir, which in a squeeze
vacuum state is characterized by the following correlation

d/vhere we have made the substitutidr=t— 7. In Eq. (A7),

functions of the field operators: (Ra(1))=Trel pr(0)RA(D)],
(A8)
Ty _
aa, )=N(w,)+1, o,=w,,
(@a,) =N(wy) N (Ra(t1)Ry(t2))=Trel pr(0)Ry(t1)Ry(t,)]
Ta\_ _
(aya,)=N(w)), o\=w,, (A5) are the first- and second-order reservoir correlation functions.

Generally, the first-order correlation function depends on
time and the second-order correlation function depends on

(@aya,)=M(w)), o\to,=2ws, the time difference. Typically, the correlation functions in
Eq. (A8) decay to zero within a very short correlation time
T, that is,
<a{aL>=M*(w)\), oyt w,=20s.
(Ra(1))—0, t>7,
In Eq. (A5) the parameterdl(w,) andM (w,) character- (A9)
ize squeezing such thaliM(w,)|?<N(w,)[N(2ws—w),)
+1], where equality holds for a minimum uncertainty state, (Ra(t1)Ry(1)) =0, |t;—t,|> 7.

andw is the carrier frequency of the squeezed vacuum field.

The complex parameter M(w,)=M(2ws— w,)

=|M(w,)|exples), Wwhere|M(w,)| is the degree of squeez- If the system evolves on a much longer time scale than the
ing andgs is the phase of the squeezed vacuum, results fromeservoir correlation time. then the reservoir can be con-
the correlations between the field mode at frequangyand  sidered Markovian. Previous Markovian master equations for
the mode at frequency«®,— w, . The parameteN(w,) is  a system interacting with a squeezed vacu8,9 have
proportional to the number of photons in the field modesrelied on the squeezed vacuum beihgprrelated on the time
NonzeroM implies that the reservoir density operatgi(0)  scales of the natural atomic lifetime and the Rabi oscillations
does not commute with the reservoir Hamiltonian; thus thenduced by the driving fields, which translates in the fre-
squeezed vacuum is not a reservoir stationary state. quency domain to making the bandwidth of the squeezed
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vacuum,I"g, much larger than the natural atomic linewidth
and the Rabi frequency, that i5g>Q,I", whereT is the
natural atomic bandwidth.
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The inclusion of the interactiohl |y lifts the degeneracy
resulting in an energy level scheme composed of triplets

(Fig. 2,

The main idea here is to first “dress” the atom by the
driving fields, and next couple the remaining dressed-atom

1
system to the frequency-dependent reservoir. In the dressed- |1n,d)=——(Q4|1n+ 10+ 1)+ Q[2n;,n,+1)

atom basis, the “system” evolves on the much longer time v2Q

scale,I'’"1 as we have effectively removed the short time —iQ,[3.,n1,n,)),

scale Rabi oscillations from the interaction picture system

density operator. Thus, deriving the master equation in the 1

dressed-atom basis allows us to consider finite-bandwidth |2.n,q)=5(02 10+ 1n,+1)+Q4|301,0,)),

effects, as we only have to assume thag>T", i.e., the
reservoir bandwidth is much greater than the natural atomic
bandwidth.

The dressed-atom states are the eigenstates of the Hamil-|3 )= i(_ Q410+ 10,+1)+Q[2,0;,n,+1)
tonian[29] 20

(A14)

+iQ,|3,n1,n,)),

Hs=Hart+Hin,s (A10)

with energies
where Eing=Eng— 379,

Eong=E (A15)

nqs
Har=h[01]2)(2|+ (01+ ©,)[3)(3|]+ 7 wiblb, E = Engt 110,
+hwoblb, (A11)
where Q=02+ 02, with Q,;=|Q,|exple;)=g;yn;, and
Q,=|Q,|exple,)=g,\n,. We have assumed the driving
is the unperturbed Hamiltonian of the cascade three-levdi€lds to be sufficiently intense that the variation of the

atom plus driving laser fields of frequencies andw,, and  photon Rabi frequencies with, andn, has been neglected
and the photon numbers replaced by the average photon

numbersn, andn, in the laser modes. We set the phase of
the lasersg, and ¢,, equal to zero for convenience. From
the energy-level diagram in Fig. 2, it is apparent that the
possibility of fluorescence exists at the frequencies,

Hin=3i%0:(S b1—b]S; )+ 3 i%02(S3 by~ b1S;)
(A12)

@s thg interaction Hamiltonian between the atom an? thTe driv- ;i = ﬁfl(Einq_ Eing), (A16)
ing fields. In Eq.(A11) and Eq.(A12) b,(b,) and b;(b;)

are, respectively, the annihilation and creation operators for

the driving field of frequencyw,(w;) and gi(gz) are the given by

coupling constants between the atom and the quantized driv- o

ing field. We assume that the driving fields are single-mode @117 W2T W3z W2,

laser fields in the coherent states ) and|a,). The dressed- Q

atom states of the coupled system will be designéitedq), W= wzp=wyt 5

where for convenience we write=n; + n, as the total num-

ber of photons in the laser fields age-n; —n, as the pho- Q

ton number difference. The states of the uncoupled @127 W23~ W2 5 (A17)

aton-driving fields system are given by
li,ny,n)=]i)®|n)®|n,). We assume that the mean pho-
ton numbem; =| «;|? of the driving fields is much larger than
the width of the photon numbekn; then the laser field

fluctuations are not significant at frequencies removed fronThese transition frequencies between the dressed states indi-

the driving frequency. . . cate that up to five lines can be observed in the fluorescence
For the cascade configuration, the undressed st@i@sn-  spectrum.

states ofH ¢) form manifolds composed of threefold nearly ~ The transformation in Eq(A14) is unitary and can be

w31~ (1)2+Q,

w13= 0)2_9.

degenerate stated1n;+1n,+1), [2n;,n,+1), and easily inverted to give the undressed atomic states in terms
|3,n1,ny) of the energy of the dressed states. This allows us to express the original
atomic operators as a linear combination of their dressed-

Eng=A[(N1+ w1+ (N +1)w,]. (A13) state counterparts in the interaction picture; thus
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Sf(t):[SI(t)]* =eX[{—i(HS+ HR)t/ﬁ]|2,n1,n2><1,n1+ 1,n2|eX[{i(HS+HR)t/ﬁ]
Q p( 0 Q p( Q )
ex —|Et ex IEI

w1~ = +S* 0+
expliogt), (A18)

S (wy)+S*

2 2

+S" (01— Q)exp —iQt) + St (w+Q)expiQt)

and

S;(t)=[$£(t)]* =eX[{—I(HS+ HR)t/ﬁ]|2,n1,n2>(3,n1,n2+ 1|eX[{|(Hs+ HR)t/ﬁ]

Q Q . Q Q
wor— = | ex —|§t +S"| wot 5 |ex |Et

2 2

S*(w,)+S"

+SH (wy— Q)exp( —i Q1) + ST (wy+ Q) exp(iQt) |expli wst), (A19)

whereS' [ w; = (1/2) Q] are the raising operators for the tran-
sitions between the dressed states separated by the frequency S=S"
w; = (1/2) Q2. We now substitute EqgA18) and (A19) into
the master equation and make the Markoff approximation.
As the system now evolves on a time scale of the orde
I'"1, provided thatl'7.<1 we can replace,(t—7) with
pi(t) in Eq. (A7) as we assume that over the time scale in
which the second-order reservoir correlation functions are
nonzero,p,(t—7) would have hardly changed from(t),
thus the system can be considered to be Markovian. The time _
dependence of the system operators is given by Bd) whergj e[§,7,8,9,1@ and maps one to one ar!d_ onto the set
and (A19). For t> 7., we may ignore the first term in Eq. of which | is a member. For the second transition frequency
(A7) as a result of Eq(A8) and then the master equation ®2:

whereie[1,2,3,4,9 andl[0,—-1,1-2,2]. The sets, of
{vhich i and| are members are one to one and onto map-

pings. Similarly, we label

S=(S)*. (A23)

becomes
I I
Sk:S+(a)2+ _Q ex | 0)2+ _Q t y
h === 2 @ Sa(1),Su(Dpi(D)] (A24)
So=(S)*,
- ON t t),Sa(t) ], A20
;t; ol P1(Sp(1), Se(1)] ( ) where ke[11,12,13,14,1F pe[16,17,18,19,2D and the
mapping ontd is the same as before.
wherew;, and w,, are the reservoir spectral densities The corresponding reservoir operators may be written in
the form
=gz | 07 el -1y TR OR(1-7)
Wap=7372 7T exXg —I(wp—1l€)T](Ry p(t—17)), 1 .
& hc Jo (A21) Ri2345= — Elﬁ; QVa, exp(—iw,t),
_ 1t . .
®ap=772 fodr exgd —i(wp—ie) TI{(Ry(t— 1)R4(1)). 1

R6,7,8,9,10:§ih; Q(xl)* al explimt),
(A25)

The reservoir spectral densities contain the mathematically
convenient factor exp{er), where we assume that—0 1 .
for t> .. pten) * Ri11213.1415 — E'ﬁ; Qg\z)a)\ exp(—iw\t),

In order to evaluate the reservoir spectral densities, of
which there would be a total of 400, we begin by making the 1

. R . . . 2 * .

rotating-wave approxmatlorﬁ\_/vhere we assume that any R16'17’18'19’2§§|h2 Q@ a{ expliwyt).
terms oscillating at frequencies other tham2 2w,, and A
(w;+ w>,) are ignored and take into account the complex
conjugate relationships. With this the number of spectralt would be time consuming to list all the reservoir spectral
densities may be reduced to 80. Defining densities, therefore we settle for an example, such as
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N 1 [t _ _ where P is the principal Cauchy value and in this case
wp()= 32 J d7 exd —i(w;—i€)7](Ry(t)Ry(t— 7)), A=w;—w,. The principal Cauchy values lead to frequency
0 shifts of the atomic spectral lines as a result of the coupling
1 to the large number of modes of the reservoir. These shifts
—_Z oL exd —i T ot are of no concern to us at this time, therefqre we will ignore
4 é N w H-i(o,+ o)t them. Due to the large number of reservoir modes, we may
. assume that they are closely spaced, and then the summation
T in Eq. (A27) may be approximated to a good degree by an
X fodT exf—i(wyi—w,—ie)TKaa,). (A26) integral over frequency space, that is,

To evaluate the integral in EqA26) we need to make a 2 _>J' dw,p(wy), (A30)
statement concerning the type of reservoir interacting with X

the system. From EdAS) we see that EqA26) becomes where p(w,) is the density of the reservoir modes in fre-

guency space. Thus EGA27) becomes

1
+ - _ (1) (1) e
w(t)=—— E, 07057 exd —i(w,+ wy)t] 1
45\ g " ofi(h=-7 f dw,p(0,)Q0 _, b
s “u “pu

t
X JodT exgd —i(w—w,—i€e)TIM(w,). xXexp —i2ot)M(w,)7mé(w;—o,)

(A27) _ %M(wl)rnexq—Zi od), (A31)

The master equation is evaluated at tinhesr., and choos-
ing e sufficiently small that expf er.)<1, the time integral
in Eq. (A27) may be evaluated to give

where we have defined

m
Iy=5[04) 00 p(01)]=IT1[D(wy)?,  (A32)

1

t —i
drexd —i(A—ie)7]|=—, A28 S A
fo H=i )7] A-ie (A28) where|T' 14| = (7/2) | wo1- €3|2(2wy If V). All other reser-
o o voir spectral densities follow a similar derivation.
which in the limite—0, reduces to With the reservoir spectral densities, and making the
1 rotating-wave approximation, in which we may ignore all
78(A)—iP=, (A29) terms oscillating at frequenciess? and w; + wj, we obtain

A the master equatio(8).

[1] A. S. Parkins, inModern Nonlinear Optics, Part,2edited by  [16] M. R. Ferguson, Z. Ficek, and B. J. Dalton, Phys. Re\64A

M. Evans and S. KielicfWiley, New York, 1993, p. 607. 2379(1996.
[2] C. W. Gardiner, Phys. Rev. Le®6, 1917(1986. [17] H. J. Kimble, O. Carnal, N. P. Georgiades, H. Mubachi, E. S.
[3] Z. Ficek and P. D. Drummond, Phys. Rev48, 6247(199)); Polzik, R. J. Thompson, and Q. A. Turchette Atomic Phys-

43, 6258(1991). ics 14 edited by D. J. Wineland, C. E. Wieman, and S. J.
[4] V. Buzek, P. L. Knight, and J. K. Kudryavtsev, Phys. Rev. A Smith (AIP, New York, 1995.

44, 1931(1991. [18] A. S. Parkins and C. W. Gardiner, Phys. Rev.48, 3796
[5] J. Gea-Banacloche, Phys. Rev. Lé&2, 1603(1989. (1989.

[6] J. Javanainen and P. L. Gould, Phys. Rev41A5088(1990. [19] J. I. Cirac and L. L. Sanchez-Soto, Phys. Rev4#4 1948
[7] N. P. Georgiades, E. S. Polzik, K. Edamatsu, H. J. Kimble, and (1991

A. S. Parkins, Phys. Rev. Leff5, 3426(1995. [20] C. Cohen-Tannoudji and S. Reynaud, J. Phys1® 345
[8] H. J. Carmichael, A. S. Lane, and D. F. Walls, Phys. Rev. Lett. (21977.
58, 2539(1987. [21] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynbéigm-
[9] H. J. Carmichael, A. S. Lane, and D. F. Walls, J. Mod. (. Photon InteractiongWiley, New York, 1992.
821(1987. [22] A. S. Parkins, P. Zoller, and H. J. Carmichael, Phys. Rev. A
[10] H. Ritsch and P. Zoller, Opt. Commu64, 523 (1987. 48, 758(1993.
[11] P. Zhou and S. Swain, Quantum Semiclassic. @pt959  [23] S. Swain, Phys. Rev. Let?.3, 1493(1994.
(1996. [24] M. Lewenstein, T. W. Mossberg, and R. J. Glauber, Phys. Rev.
[12] S. An and M. Sargent lIl, Phys. Rev. 29, 3998(1989. Lett. 59, 775 (1987).
[13] B. N. Jagatap, Q. V. Lawande, and S. V. Lawande, Phys. Re\.25] G. Yeoman and S. M. Barnett, J. Mod. Og8, 2037(1996.
A 43, 535(1991)). [26] M. Bosticky, Z. Ficek, and B. J. Dalton, Phys. Rev58, 4439
[14] S. Smart and S. Swain, Quantum Oft.281(1992. (1996.

[15] S. Smart and S. Swain, J. Mod. Og0, 1939(1993. [27] J. Opt. Soc. Am. B4 (10), (1987, special issue on squeezed



4138 M. R. FERGUSON, Z. FICEK, AND B. J. DALTON 56

states of the electromagnetic field, edited by H. J. Kimble and31] B. J. Dalton, E. S. Guerra, and P. L. Knight, Phys. Re\b4A

D. F. Walls. 2292(1996.

[28] J. Mod. Opt.34 (6/7) (1987, special issue on squeezed light, [32] P. D. Drummond and M. D. Reid, Phys. Rev. 41, 3930
edited by R. Loudon and P. L. Knight. (1990.

[29] C. Cohen-Tannoudji and S. Reynaud, J. Phys1® 2311 [33] R. M. Whitley and C. R. Stroud, Jr., Phys. Rev.14, 1498
(1979. (1976.

[30] M. Born and E. Wolf,Principles of Optics(Macmillan, New  [34] W. H. Louisell, Quantum Statistical Properties of Radiation

York, 1964. (Wiley, New York, 1973.



