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Phase-dependent fluorescence linewidth narrowing in a three-level atom damped
by a finite-bandwidth squeezed vacuum
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We examine subnatural phase-dependent linewidths in the fluorescence spectrum of a three-level atom
damped by a narrow-bandwidth squeezed vacuum in a cavity. Using the dressed-atom model approach of a
strongly driven three-level cascade system, we derive the master equation of the system from which we obtain
simple analytical expressions for the fluorescence spectrum. We show that the phase effects depend on the
bandwidths of the squeezed vacuum and the cavity relative to the Rabi frequency of the driving fields. When
the squeezing bandwidth is much larger than the Rabi frequency, the spectrum consists of five lines with only
the central and outer sidebands dependent on the phase. For a squeezing bandwidth much smaller than the Rabi
frequency the number of lines in the spectrum and their phase properties depend on the frequency at which the
squeezing and cavity modes are centered. When the squeezing and cavity modes are centered on the inner Rabi
sidebands, the spectrum exhibits five lines that are completely independent of the squeezing phase with only
the inner Rabi sidebands dependent on the squeezing correlations. Matching the squeezing and cavity modes to
the outer Rabi sidebands leads to the disappearance of the inner Rabi sidebands and a strong phase dependence
of the central line and the outer Rabi sidebands. We find that in this case the system behaves as an individual
two-level system that reveals exactly the noise distribution in the input squeezed vacuum.
@S1050-2947~97!00111-X#
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I. INTRODUCTION

The radiative properties of atoms coupled to a squee
vacuum field have been the subject of intense investigat
in recent years@1#. Most well known are the effects o
squeezing phase-dependent inhibition of spontaneous e
sion @2#, the violation of the Boltzmann distribution of th
populations of the atomic states@3,4#, and modifications of
multiphoton processes@3–6#. Such modifications have re
cently been confirmed experimentally in the first nonclass
spectroscopic experiment@7#. In the experiment the linea
intensity dependence of the two-photon transition rate i
cascade three-level atom has been observed. This de
dence is in contrast with the quadratic intensity depende
produced by classical light sources.

The most intriguing squeezing-induced effect is t
phase-dependent inhibited spontaneous emission, first
dicted by Gardiner@2#. He showed theoretically that the in
hibition of the atomic dipole moment could occur in spon
neous emission from a two-level atom damped by
broadband squeezed vacuum field. With the addition o
coherent driving field this modification can lead to pha
dependent subnatural linewidths in the fluorescence and
sorption spectra@8–12#. These subnatural linewidths lead
a partial suppression of spontaneous emission at certain
quencies; of course the total amount of emission is
changed. Further work has demonstrated subnatural ph
dependent linewidths in the resonance fluorescence f
three-level atoms@13–16#. Such effects might be more easi
observed in three-level atoms since the driving field f
quency can be distinguished more easily from the fluor
cence field. However, no significant narrowing of the sp
tral lines was predicted for three-level atoms, making
561050-2947/97/56~5!/4125~14!/$10.00
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phase-dependent effects even in three-level atoms difficu
observe experimentally. Although the phase-dependent
rowing of the spectral lines has not yet been observed
appears that this observation is not very far off@17#. The
major difficulty in any attempt to observe the phas
dependent spectral narrowing is that the present source
the squeezed vacuum field generate a beam that can co
only to a small fraction of the modes surrounding the ato
It has been suggested@18,19# that the best way to overcom
this difficulty is to place the atom inside an optical cavit
Inside the cavity the mode structure of the vacuum field
dramatically altered, allowing for an effective squeeze
vacuum-atom coupling to be achieved with an incomi
squeezed-light beam propagating under a small solid an

Apart from this difficulty there is another important aspe
of the interaction that must be considered in any attemp
observe the phase dependence of the spectral linewidth
rowing. The effect appears when another ‘‘reference pha
field is added to the system. The introduction of a coher
driving field leads to the dependence of the spectral li
widths on the relative phase of the squeezed vacuum and
driving field. As pointed out by Carmichaelet al. @8,9# the
phase dependence in the resonance fluorescence from a
level atom is most evident for strong driving fields rath
than for weak fields. However, for a strong driving field th
system is no longer a two-level system. A two-level ato
driven by a strong laser field is represented by a system o
infinite set of the energy states, called dressed states@20,21#.
The dressed states of the system group into doublets;
neighboring doublets are separated by the frequency of
driving field, whereas dressed states in each doublet are s
rated by the Rabi frequency of the driving field. When t
dressed system is coupled to a vacuum field the fluoresc
will reveal the multilevel structure of the system. As point
4125 © 1997 The American Physical Society
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out above, the strongest phase dependence of the spe
linewidths has been predicted in a two-level system. T
multifrequency transitions between the dressed states di
ish the phase-dependent spectral narrowing. For example
a two-level atom driven by a strong laser field only the ce
tral component of the fluorescence spectrum can be sig
cantly narrowed@8–12#. For a three-level atom driven b
two strong laser fields only a small narrowing can be o
served in the central component of the spectrum@13–16#.

Recently, Parkinset al. @22# have proposed a system th
one might consider as a realization of a two-level dres
system coupled to a squeezed vacuum inside an optical
ity. In the model a two-level atom is located in a cavi
driven by a squeezed vacuum field. They have shown tha
the strong coupling regime, in which the dipole coupli
strength between the atom and the cavity mode is m
larger than the bandwidth of the squeezed vacuum, the
tem reveals the essential features of a two-level~single-
frequency! system. Since there is no coherent driving fie
the features, however, are not sensitive to the squee
phase. Significantly narrower fluorescence spectra h
however, been predicted by Swain@23# in two-level atom
cases with a broadband squeezed vacuum with large ph
numbers in the regime where the Rabi frequency and ato
linewidth are comparable. In the three-level atom case s
effects are also seen@13–15# when the two transitions ar
coupled to two independent squeezed vacuum fields.

In this paper we present a modified version of the ab
model. We consider a three-level atom in a cascade confi
ration driven by two coherent laser fields inside an opti
cavity. We examine the situation of how the cavity, oper
ing in a weak coupling regime, driven by a finite-bandwid
squeezed vacuum, not only recovers the essential featur
a two-level system, but also realizes a two-level system w
phase dependent linewidths. Our proposal is based on
observation by Lewensteinet al. @24# that by driving an atom
with a strong laser field inside an optical cavity one c
dynamically change the transition rates between the dre
states, which can lead to the suppression of the spontan
emission between some of the dressed states.

In our model we use the master equation technique ba
on dressed-atom states, first applied to narrow-bandw

FIG. 1. Energy-level scheme for the three-level cascade c
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squeezed vacuum problems by Yeoman and Barnett@25#, to
calculate analytically the fluorescence spectrum of a thr
level cascade system driven by two coherent laser fields
coupled to a finite-bandwidth squeezed vacuum inside
optical cavity. This approach has also recently been app
to calculate probe absorption spectra for driven three-le
systems in narrow-bandwidth squeezed vacuum fields@26#.
We assume that the squeezed vacuum is the output of a
degenerate parametric amplifier operating below thresh
The nondegenerate parametric amplifier has proven to be
most successful source of a squeezed vacuum field suit
for nonclassical atomic spectroscopy@27,28#. In the deriva-
tion of the master equation, we first ‘‘dress’’ the atom wi
the laser fields and next couple the resulting system to
narrow-bandwidth squeezed vacuum and the cavity mo
The advantage of working in the dressed-atom picture
manifest in the simple analytical expressions for the spec
linewidths and the fluorescence spectrum@25,27,28#.

n-

FIG. 2. Energy-level diagrams of~a! the undressed Hamiltonian
and ~b! the dressed system. The manifold (n,q) is separated from
the manifolds (n71,q61) by the frequencyv2 and from the mani-
folds (n61,q61) by the frequencyv1 ; D is the frequency differ-
encev12v2 .
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This paper is organized as follows. In Sec. II we pres
the model and derive the equations of motion for the den
matrix elements. In Sec. III we discuss the intensities a
widths of the spectral features for free space and cavity s
ations. In Sec. IV, we present the fluorescence spectrum.
summarize our results in Sec. V. A detailed derivation of
master equation of the system is presented in the Appen

II. MODEL AND METHOD

We consider a three-level atom in the cascade config
tion ~Fig. 1! driven by two strong single-mode laser fields
frequenciesv1 andv2 , each of them coupled to one of th
two atomic transitions. The laser fields are on resonance.
combined atom1 driving fields system can be represent
by the infinite number of energy states@29#. The states,
called dressed states of the system, group into manif
composed of triplets~Fig. 2!,

u1,n,q&5
1

&V
~ iV1u1,n111,n211&1Vu2,n1 ,n211&

2 iV2u3,n1 ,n2&),

u2,n,q&5
1

V
~V2u1,n111,n211&1V1u3,n1 ,n2&), ~1!
se

rs

o

t
ty
d
u-

e
e
ix.

a-

he

ds

u3,n,q&5
1

&V
~2 iV1u1,n111,n211&1Vu2,n1 ,n211&

1 iV2u3,n1 ,n2&),

with energies

E1nq5Enq2 1
2 \V,

E2nq5Enq , ~2!

E3nq5Enq1 1
2 \V,

where V1 and V2 are the Rabi frequencies of the drivin
fields,V5AV1

21V2
2, q5n12n2 , n5n11n2 , with n1 (n2)

the number of photons in the laser mode of frequencyv1
(v2) and Enq is the energy of thenth manifold @see Eq.
~A15!#. We assume that the dressed system is coupled t
other modes of the electromagnetic field, which are initia
in the vacuum state, and that a part of the vacuum mo
those with frequencies around the laser frequencyv1 , are in
a squeezed vacuum state.

The time evolution of the dressed system in a squee
vacuum field centered around the frequencyv1 is given by
the master equation, derived in the Appendix, as
]r I~ t !

]t
52

1

2 (
i 51

2

(
l 522

2

G i i XÑS v i6
l

2
V D H FS2S v i6

l

2
V D ,S1S v i6

l

2
V D r I~ t !G1Fr I~ t !S2S v i6

l

2
V D ,S1S v i6

l

2
V D G J

1F ÑS v i6
l

2
V D1UDS v i6

l

2
V D U2G H FS1S v i6

l

2
V D ,S2S v i6

l

2
V D r I~ t !G

1Fr I~ t !S1S v i6
l

2
V D ,S2S v i6

l

2
V D G J C1 1

2 (
l 522

2

G11XM̃ S v16
l

2
V D H FS1S v17

l

2
V D ,S1S v16

l

2
V D r I~ t !G

1Fr I~ t !S1S v17
l

2
V D ,S1S v16

l

2
V D G J 1M̃* S v16

l

2
V D H FS2S v17

l

2
V D ,S2S v16

l

2
V D r I~ t !G

1Fr I~ t !S2S v17
l

2
V D ,S2S v16

l

2
V D G J C, ~3!
in

of

ode
ate

is
the

the
where S1@v i6( l /2) V] and S2@v i6( l /2) V] 5$S1@v i6
( l /2) V] %* ~i 51,2; l 50,1,2! are the raising and lowering
operators for the transitions between the dressed states
rated by the frequencyv i6( l /2) V, G11 and G22 are the
spontaneous decay rates respectively of theu2&→u1& and
u3&→u2& transitions. The frequency-dependent paramete

Ñ~v!5uD~v!u2N~v!,
~4!

uM̃ ~v!u5uD~v!u2uM ~v!u

are the effective squeezing parameters modified by the m
function of the reservoir. Expressions forN andM are given
pa-

de

in Eq. ~A5!. r I is the atom-laser modes density operator
the interaction picture. It is seen from Eq.~3! that any phase
dependence is associated with the decay rateG11 of the
u2&→u1& transition, which is a consequence of the choice
squeezed vacuum carrier frequencyvs5v1 . Moreover, the
evolution of the density matrix depends on the vacuum m
density uD(v)u2 and squeezing at different dressed-st
transition frequencies. In free space the mode function
slowly varying compared to the transition frequencies of
atom and thusuD(v)u251 after evaluation of Eq.~A32!. In
a cavity situation the mode function strongly depends on
frequency@30,31#. In this caseuD(v)u2 can be identified as
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the Airy function of the cavity. The explicit form ofuD(v)u2
depends on the type of cavity. For the so-called one-m
cavity the function uD(v)u2 can be approximated by
Lorentzian peak centered on the cavity frequencyvc . For a
two-mode cavity, uD(v)u2 can be approximated by tw
Lorentzians centered onvc6dc , wheredc is the displace-
ment of the cavity peaks from the central frequency.

The master equation~3! allows us to calculate the popu
lations of the dressed states and coherences. Taking th
agonal matrix elements of each side of Eq.~3! for dressed-
atom statesu i ,n,q& and summing overn,q, we obtain the
following equations of motion for the populations of th
dressed states:

ṙ1152
G

8
$2@Ñ~v12 1

2 V!1uD~v12 1
2 V!u2#r11

1@Ñ~v11V!1Ñ~v12V!1uD~v12V!u2

22uM̃ ~v11V!ucosws#r111uD~v22V!u2r11

22Ñ~v12 1
2 V!r2222uD~v21 1

2 V!u2r22

2@Ñ~v11V!1Ñ~v12V!1uD~v11V!u2

22uM̃ ~v12V!ucosws#r332uD~v21V!u2r33%,
e

di-

ṙ2252
G

8
$22@Ñ~v12 1

2 V!1uD~v12 1
2 V!u2#r11

12@Ñ~v11 1
2 V!1Ñ~v12 1

2 V!#r22

12@ uD~v21 1
2 V!u21uD~v22 1

2 V!u2#r22

22@Ñ~v11 1
2 V!1uD~v11 1

2 V!u2#r33%,

ṙ3352
G

8
$2@Ñ~v11V!1Ñ~v12V!1uD~v12V!u2

22uM̃ ~v11V!ucosws#r112uD~v22V!u2r11

22@Ñ~v11 1
2 V!#r2222uD~v22 1

2 V!u2r22

12@Ñ~v11 1
2 V!1uD~v11 1

2 V!u2#r33

1@Ñ~v11V!1Ñ~v12V!1uD~v11V!u2

22uM̃ ~v12V!ucosws#r331uD~v22V!u2r33%, ~5!

wherer i i 5(nqr inq,inq . Taking the matrix elements of eac
side of Eq. ~3! between dressed-atom states^ i ,n,qu and
u j ,n21,q11& and summing overn,q, we obtain the follow-
ing equations of motion for the coherences between
dressed states:
s

at

s
es

e Airy
idebands.
ṙ1252
G

8
$ 1

2 @2Ñ~v1!1uD~v1!u212uM̃ ~v1!ucosws#1@2Ñ~v12 1
2 V!1Ñ~v11 1

2 V!1uD~v12 1
2 V!u2#

1 1
2 @Ñ~v11V!1Ñ~v12V!1uD~v12V!u222uM̃ ~v11V!ucosws#1 1

2 @ uD~v2!u212uD~v22 1
2 V!u2

12uD~v21 1
2 V!u21uD~v22V!u2#%r122

1
4 M̃ ~v12 1

2 V!Gr23,

ṙ2352
G

8
$ 1

2 @2Ñ~v1!1uD~v1!u212uM̃ ~v1!ucosws#1@2Ñ~v11 1
2 V!1Ñ~v12 1

2 V!1uD~v11 1
2 V!u2#

1 1
2 @Ñ~v11V!1Ñ~v12V!1uD~v11V!u222uM̃ ~v11V!ucosws#1 1

2 @ uD~v2!u212uD~v22 1
2 V!u2

12uD~v21 1
2 V!u21uD~v21V!u2#%r232

1
4 M̃* ~v12 1

2 V!Gr12,

ṙ1352
G

8
„2@2Ñ~v1!1uD~v1!u212uM̃ ~v1!ucosws#1@Ñ~v12 1

2 V!1Ñ~v11 1
2 V!1uD~v12 1

2 V!u21uD~v11 1
2 V!u2#

1$ 1
2 @2Ñ~v12V!#12Ñ~v11V!1uD~v12V!u21uD~v11V!u224uM̃ ~v11V!ucosws%

12$uD~v2!u21 1
4 @ uD~v21V!u2#1uD~v22V!u2#%…r13, ~6!

wherer i j 5(nqr inq, jn21q11 and the remaining equations of motion for the coherencesr i i ( i 51,2,3) obey the same equation
of motion as the populations of the dressed states~3!. For simplicity, we have assumed equal decay rates,G115G225G, and
equal Rabi frequencies,V15V2 in Eqs.~5! and~6!. The coherencesr12(r21) andr23(r32) correspond to the spectral lines

frequenciesv11 1
2 V(v12 1

2 V), the coherencesr13(r31) correspond to the lines atv11V(v12V), whereas the coherence
r i i ( i 51,2,3) correspond to the central component of the spectrum. In general, the spectrum is composed of five lin@29#,

the central and two pairs of sidebands located atv16 1
2 V andv16V.

It is interesting to note from Eq.~5! that the time evolution of the populations of the dressed states depends on th
function of the cavity centered only at the dressed-state resonances corresponding to the inner and outer Rabi s
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Therefore, in order to observe any fluorescence from the system, the cavity linewidth should be, at least, comparab
inner Rabi sidebands frequency, or one should use a two-mode cavity with the modes centered on either the inner or o
sidebands. This suggests that the dynamics of the system coupled to the cavity modes could be completely different
in free space, whereuD(v)u251 for all relevantv. This also suggests that a two-mode rather than one-mode squeezed v
would be most useful in any attempt to observe the squeezing effects on the fluorescence spectrum. Therefore, we co
an input squeezed vacuum, the output of a nondegenerate parametric amplifier for which the squeezing parameters@32#

N~v i !5
by

22bx
2

8 H F 1

~vs2v i2ds!
21bx

2 2
1

~vs2v i2ds!
21by

2G1F 1

~vs2v i1ds!
21bx

2 2
1

~vs2v i1ds!
21by

2G J ,

uM ~v i !u5
by

22bx
2

8 H F 1

~vs2v i2ds!
21bx

2 1
1

~vs2v i2ds!
21by

2G1F 1

~vs2v i1ds!
21bx

2 1
1

~vs2v i1ds!
21by

2G J , ~7!
um
a
in
n

th

e

u

i

n
is
tw
tr

ta
s

ta

t
a

a

he

ed
e to

d to
se

t of
nd as

ith

en
n-
is

end
and-
wherevs is the carrier frequency of the squeezed vacu
and ds is the displacement from the carrier frequency
which the vacuum is maximally squeezed. The squeez
parameters are composed of two Lorentzians, with ba
widths given by

bx5
g

2
2u«u,

~8!

by5
g

2
1u«u,

whereg is the cavity damping rate andu«u is the effective
pump intensity. The maximum squeezing occurs at
threshold for parametric oscillation, i.e., asu«u→g/2. We
assume that the bandwidths of the nondegenerate param
amplifier can be much smaller than the Rabi frequencies
the driving fields. This ensures that if the squeezed vacu
is coupled to a particular frequencyv i , there is not a sig-
nificant contribution at another frequency removed from
by the order of a Rabi frequency.

III. INTENSITIES AND WIDTHS
OF THE SPECTRAL FEATURES

According to the dressed-atom model of Cohe
Tannoudji and Reynaud@21,29# the fluorescence spectrum
associated with transitions between dressed states of
neighboring manifolds and the frequencies of the spec
lines are given by the transition frequencies Eq.~A17!. The
intensities of the spectral lines are proportional to the to
number of transitions between the corresponding dres
states. Thus, the stationary intensitiesG@v16( l /2) V# of the
spectral lines are given by the product of the upper s
population r i i and the transition rate g i j , i.e.,
G(vk)5tg i j r i i (`), where t is an experimental term tha
depends on the atom–laser-field interaction time and is
sumed large compared toG21.

The transition rates are defined by Fermi’s golden rule

g i j 5G11z^ i ,n,quS1
1u j ,n21,q21& z2

1G22z^ i ,n,quS2
1u j ,n21,q21& z2. ~9!

Using Eq.~A14!, we find that the transition rates between t
dressed statesu i ,n,q& and u j ,n21,q11& are
t
g

d-

e

tric
of
m

t

-

o
al

l
ed

te

s-

s

g115g125g135g215g235g315g325g335
G

4
,

~10!

g2250.

In order to find the stationary populations of the dress
states and the linewidths of the spectral features, we hav
solve respectively the system of three coupled equations~5!
and the system of six coupled equations~6!.

A. Free-space situation

First, assume that the dressed-atom system is couple
the vacuum modes in free space. In this ca
uD@v16( l /2) V#u251, and it is easy to find from Eq.~3! that
the dressed states are equally populated with

r11~`!5r22~`!5r33~`!5 1
3 . ~11!

Interestingly, the stationary populations are independen
squeezing parameters and are the same for a broadba
well as a narrow-band squeezed vacuum. From Eqs.~10! and
~11!, we find that the spectrum is composed of five lines w
the intensities

Ginel~v1!5
Gt

6
,

G~v16 1
2 V!5

Gt

6
, ~12!

G~v16V!5
Gt

12
.

The intensity of the inelastic central spectral line has be
determined by subtracting from the total weight of the ce
tral peak the weight of the coherent component, which
given by

Gel~v2!5t@d11r11~`!1d22r22~`!1d33r33~`!#2,
~13!

wheredji 5^ j ,n21,q11umu i ,n,q& are the transition dipole
moments between the dressed states.

The linewidths of the spectral features, however, dep
on the squeezing parameters and in particular on the b
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width of the squeezed vacuum. In order to determine
widths of the spectral lines, we follow the approach
Cohen-Tannoudji and Reynaud@21#, that the linewidths of
the spectral components are given by the eigenvalues o
coupled equations of motion for the coherencesr i i andr i j .
For the central component of the spectrum, we find that
eigenvalues of Eq.~5! for a broadband squeezed vacuu
where N@v i6( l /2) V#5N, uM @v i6( l /2) V#u5uM u, and
the free-space situation whereuD@v i6( l /2) V#u251, are

b150,

b25 3
4 ~N11!G, ~14!

b35 1
4 ~3N1322uM ucosws!G.

The eigenvalueb1 corresponds to the elastic component
the spectrum, while the eigenvaluesb2 andb3 correspond to
the inelastic components at the frequencyv1 .

The linewidth of the inner sidebands atv16 1
2 V is given

by the damping rate of the coherencesr12 andr23,

hb5 5
8 ~N116 1

4 uM u!G, ~15!

and similarly, the linewidth of the outer sidebands atv16V
is given by the damping rate of the coherencesr13 andr31,

bb5~N111 1
4 uM ucosws!G. ~16!

It is seen from Eqs.~14!–~16! that only the central spectra
peak and the outer Rabi sideband are phase dependent
the inner Rabi sideband dependent only on the degre
squeezinguM u. It is worth noting the phase difference b
tween the outer Rabi sidebands and the central spectral c
ponent. The two lines are out of phase byp, resulting in only
one of the two being narrowed for a particular choice
phase, while the other is broadened.

If the squeezed vacuum has a finite bandwidth, such
the squeezing is confined to only specific modes, the li
widths of the spectral features and their phase properties
significantly different from the above for the broadband ca
For narrow squeezed vacuum modes centered aro

v16 1
2 V, N(v16 1

2 V)5N, uM (v16 1
2 V)5uM u, and the

other squeezing parameters are zero. In this case the sta
ary populations of the dressed states are given by Eq.~11!,
and the widths of the spectral lines are

n150,

n25 3
4 ~N11!G, ~17!

n35 1
4 ~N11!G

for the central component,

hn5 1
8 ~3N15!G6 1

4 uM uG ~18!

for the inner Rabi sidebands, and

bn5 1
4 ~N14!G ~19!

for the outer Rabi sidebands.
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Interestingly, the spectral linewidths are independent
the squeezing phase and all are broadened due to the

ence of thermal photons at the frequenciesv16 1
2 V. How-

ever, for squeezing frequencies centered aroundv16V, i.e.,
N(v16V)5N, uM (v16V)u5uM u, uD@v i6( l /2) V#u251
and the other squeezing parameters equal to zero, we
that the width of the central spectral peak is given by

f 150,

f 25 3
4 G, ~20!

f 35 1
4 ~2N1322uM ucosws!G,

where, as before, the eigenvaluef 1 corresponds to the elasti
component of the spectrum, while the eigenvaluesf 2 and f 3
correspond to the inelastic components at the frequencyv1 .

Similarly, for the sideband atv16 1
2 V we find that the line-

width is given by

h f5
1
8 ~N152uM ucosws!G, ~21!

and for the outer Rabi sideband atv26V the linewidth is

b f5
1
4 ~N142uM ucosws!G. ~22!

In this situation,all spectral lines are phase dependent a
in contrast to the broadband case, the spectral lines ca
narrowed below the ordinary vacuum level. It happens for
values of N and ws50. The situation of the atom bein
damped by an ordinary vacuum can be obtained by set
N5uM u50 in Eqs. ~14!–~16!, which results in linewidths
for the spectral components equal to those determined
@33,29#. It can be seen that in such a situation, the linewid
are not phase dependent.

B. Cavity situation

When the dressed system is located inside an optical
ity, the spectral intensities and linewidths differ significan
from those derived previously for the free-space situati
Firstly, we consider a two-mode narrow-bandwidth cav
and a two-mode narrow-bandwidth squeezed vacuum, b

centered onv16 1
2 V. From Eqs.~5! and~6!, we find that in

this case the populations and coherences, similar to thos
free space, are independent of the squeezing phase. The
tionary populations of the dressed states are dependent o
thermal fluctuationsN, and are given by

r115r335
N

3N11
,

~23!

r225
N11

3N11
,

whereN5Ñ(v16 1
2 V).

Similarly, we find from Eq.~6! that the linewidths of the
central component and the outer Rabi sidebands depend
on N and are given by
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c150,

c25 1
4 ~N11!G, ~24!

c35 1
4 ~3N11!G

for the central component and

bc5 1
4 ~N11!G ~25!

for the outer Rabi sidebands. The inner Rabi sidebands, h
ever, are composed of two lines of the same frequency
different linewidth, dependent on the squeezing correlati
uM u as

hc5 1
8 ~3N1162uM u!G. ~26!

When the two-mode cavity and the two-mode squee
vacuum are centered on the outer Rabi sidebands atv16V,
the stationary populations are independent of the squee
parameters and are given by

r115r335
1
2 ,

~27!

r2250.

Then we find that the intensities of the spectral lines are

Ginel~v1!5
Gt

4
,

G~v16 1
2 V!50, ~28!

G~v16V!5
Gt

8
.

In this case, the modified environment results in the sp
trum effectively being reduced to three lines. With the cav
modes maximized at the frequencyv16V we see from Eqs.
~6! and ~27! that the populationr22 decouples from the re
maining equations of motion, leaving the population distr
uted between the statesu3,n,q& and u1,n,q& only. Thus, in
this situation the dressed system reduces to that of a dr
two-level atom and we would only expect to observe th
spectral lines in the fluorescent spectra: the central peak
the outer Rabi sidebands atv16V.

The width of the spectral lines is given by the eigenvalu
of the equations of motion. For the central peak

c150,
~29!

c25 1
2 ~N1 1

2 2uM ucosws!G

and for the outer Rabi sideband

bc5 1
4 ~N1 1

2 2uM ucosws!G. ~30!

Clearly, incorporating into the system a two-mode cav
centered on the outer Rabi sidebands can lead to narro
of all the spectral lines to zero forws50 and N@1. The

latter condition leads to the approximationuM u'N1 1
2 ,

which can be observed from the inequality directly followin
Eq. ~A5!; thus the linewidths approach zero in the limit
w-
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large squeezing whenws50. It is interesting to note from
Eqs.~29! and~30! that the linewidths of the spectral feature
reveal exactly the noise distribution in the input squeez
vacuum. It is easy to show from Eq.~A5! that the fluctua-
tions in the quadrature components of the input squee
vacuum are

F5^~Daw!2&5 1
2 ~N1 1

2 2uM ucosws!. ~31!

Therefore, the potential for narrowing of the spectral lines
not impaired in the presence of a two-mode cavity cente
on the outer Rabi sidebands. We may conclude that in

FIG. 3. Linewidth of the central spectral component~in units of
G! as a function ofN for the three different squeezed reservoirs:~a!
broadband squeezed vacuum~---!, ~b! finite-bandwidth squeezed
vacuum withN(v16V)5N and uM (v16V)u5uM u ~-•-! in free
space, and~c! finite-bandwidth squeezed vacuum in a cavity wi
uD(v16V)u2 and uD(v)u250 for all otherv ~•••!. The solid line
represents the normal vacuum linewidth~in units of G!.

FIG. 4. Linewidth of the inner Rabi sideband~in units of G! as
a function ofN for the two different squeezed reservoirs:~a! finite
bandwidth squeezed vacuum withN(v16V)5N and
uM (v16V)u5uM u ~---! in free space and~b! in a cavity with
uD(v16V)u2 and uD(v)u250 for all otherv ~-•-!. The solid line
represents the normal vacuum linewidth~in units of G!.
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4132 56M. R. FERGUSON, Z. FICEK, AND B. J. DALTON
case each of the transitions individually couples to the in
squeezed vacuum and acts as a single two-level system
phase-dependent noise.

To conclude our discussion of the spectral linewidths
the free space and cavity situations, we plot in Figs. 3–5
linewidth of the spectral lines as a function ofN and three
different squeezed vacua. Figure 3 shows the width of
central spectral line. In the case of the system interac
with a broadband squeezed vacuum, line narrowing
'13% below the normal vacuum width is possible for sm
values ofN. However, whenN approaches unity the line
width becomes broader than the normal vacuum width.
the finite bandwidth squeezed vacuum case it can be
that in the limit of large squeezing, i.e., asN→`, a reduc-
tion of '33% below the normal vacuum linewidth is po
sible. Finally, for the atom in a cavity, the reduction of spo

FIG. 5. Linewidth of the outer Rabi sideband~in units of G! as
a function of N for the three different squeezed reservoirs:~a!
broadband squeezed vacuum~---!, ~b! finite bandwidth squeezed
vacuum withN(v16V)5N and uM (v16V)u5uM u ~-•-! in free
space, and~c! in a cavity withuD(v16V)u2 anduD(v)u250 for all
otherv ~•••!. The solid line represents the normal vacuum linewid
~in units of G!.

FIG. 6. Resonance fluorescence spectra~in units of t! vs the
frequency detuningv2v1 ~in units of G! for the three-level atom
damped by a broadband squeezed vacuum withV510G, N50.5,
uM u5@N(N11)#1/2, andws50 ~—!, p ~---!.
t
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taneous emission outside the finite frequency intervalsv6V
results in less noise present at the fluorescent frequen
thus allowing further reduction of the linewidths. Indeed,
can be seen that in the limit of large squeezing the linewi
can be reduced by 100%.

The width of the spectral Rabi sidebands atv6 1
2 V is

plotted in Fig. 4 for the finite-bandwidth squeezed vacuum
there was no phase dependence for a broadband sque
vacuum, only a dependence on thedegreeof squeezinguM u,
and the spectral line is not present when the atom is cou
to a squeezed vacuum in a cavity. We see from Fig. 4 tha
the limit of large squeezing a linewidth reduction of up
10% is possible.

Finally, for the Rabi sidebands atv6V we see from Fig.
5 that when the atom is damped by a broadband sque

FIG. 7. Resonance fluorescence spectra~in units of t! vs the
frequency detuningv2v1 ~in units of G! for the three-level atom
damped by a finite bandwidth squeezed vacuum in free sp
where N(v16V)5N, uM (v16V)u5uM u, and uD(v)u251, with
N50.5, V510G, uM u5@N(N11)#1/2, andws50 ~—!, p ~---!.

FIG. 8. Resonance fluorescence spectra~in units of t! vs the
frequency detuningv2v1 ~in units of G! for the three-level atom
damped by a finite bandwidth squeezed vacuum in a cavity b
centered on the outer Rabi sideband whereN(v16V)5N,
uM (v16V)u5uM u, uD(v16V)u251, and uD(v)u250 for all
other v, with N50.5, V510G, uM u5@N(N11)#1/2, and ws50
~—!, p ~---!.
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vacuum only a limited amount of line reduction is possib
for small N. This reduction is lost whenN approaches 0.1
being replaced with a linearly increasing linewidth. If th
atom is coupled by a narrow-bandwith squeezed vacu
maximized atv16V we see that in the limit of large squee
ing it is possible to narrow the linewidth by 12%. Howeve
if the atom is then placed in a cavity, it is possible to redu
the linewidth by 100% below the normal vacuum linewid
due to the suppression of spontaneous emission.

IV. FLUORESCENCE SPECTRUM

Having available the intensities of the spectral lines a
their widths, we can write down the entire spectrum of t
fluorescent field emitted at theu2&↔u1& transition as

S~v!5Ginel~v1!
l/p

~v2v1!21l2

1G~v12 1
2 V!

h/p

~v2v11 1
2 V!21h2

1G~v11 1
2 V!

h/p

~v2v12 1
2 V!21h2

1G~v12V!
b/p

~v2v11V!21b2

1G~v11V!
b/p

~v2v12V!21b2 , ~32!

wherel refers to the linewidth of the central peak, andh and
b are the linewidths of the inner and outer Rabi sideban
respectively. Substituting the linewidths into Eq.~32! along
with the intensities of the spectral features calculated ea
and assuming thatG115G22 andV510G we are able to plot
the fluorescent spectra for the atom damped by a variet
reservoirs in order to emphasize the dependency of the s
tra on squeezing phase and the squeezing bandwidth. In
6 we plot the fluorescent spectrum for an atom damped b
broadband squeezed vacuum with two different pha
ws50 andp. It is apparent that for the different values ofws
only the outer Rabi sideband and the central peak are
fected.

The fluorescent spectrum of the system damped in
space by a finite bandwidth squeezed vacuum maximize
the frequenciesv16V is shown in Fig. 7. Here all lines in
the fluorescent spectrum are phase dependent.

Placing the system in a two-mode cavity with the mod
centered on the outer sidebands results in the loss of
inner Rabi sidebands from the fluorescent spectrum. Th
shown in Fig. 8, and indicates that inside the cavity the s
tem effectively behaves as a two-level system. In this cas
spectral lines are very narrow and phase dependent. The
widths can even be reduced to zero in the limit of lar
squeezing.

V. SUMMARY

In this paper we have examined the phase dependenc
the fluorescence spectrum of a three-level atom driven
m
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two resonant laser fields and damped by a finite-bandw
squeezed vacuum. We have assumed that the bandwid
the squeezing is much smaller than the Rabi frequency of
driving fields, but much larger than the natural atomic lin
width, in order to ensure that the behavior of the reduc
density operator for the system is Markovian. We derived
master equation in the dressed-atom basis, which remo
the fast-time-scale Rabi oscillations from the interaction p
ture. The system now evolves on a much longer time sc
allowing us to consider finite-bandwidth reservoir effects u
ing the Markoff approximation.

We specifically examined the Cascade system where
squeezed vacuum carrier frequency was equal to the dres
atom frequency,vs5v1 . Assuming the source of the
squeezed vacuum is a nondegenerate parametric amp
~NDPA! operating below the threshold, we have found th
all spectral lines show a dependence on the squeezing p
and can be significantly narrowed below the ordina
vacuum level. The phase dependence and the narrow
strongly depend on the frequency at which the squeezing
cavity modes are centered. When the system interacts w
narrow-bandwidth squeezed vacuum in free space and
squeezed modes are centered on the inner Rabi sideband
spectrum exhibits five lines that are completely independ
of the squeezing phase. Matching the squeezing modes t
outer Rabi sidebands results in all the spectral lines dep
dent on the phase with the possibility of a 33% reduction
the spectral linewidths below the vacuum level.

Placing the system in a cavity results in the further n
rowing of the spectral lines due to the modification of t
density of modes interacting with the atom. Along wi
avoiding the experimentally difficult situation of squeezin
all modes coupled to the atom, the cavity modifies the ato
spontaneous rates, which can even reduce the three-
atom dynamics to that characteristic of a two-level atom.
a consequence, the linewidths of the peaks in the fluores
spectra are reduced compared to the free-space situa
Therefore, when the cavity modes are in a squeezed vac
state, a further reduction of the spectral lines is possi
resulting in the linewidths being reduced to zero, with t
appropriate choice of phase and in the limit of large sque
ing.
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APPENDIX A: DERIVATION
OF THE MASTER EQUATION „3…

The time evolution of a system interacting with a res
voir is given by the equation of motion for the reduced de
sity operatorr. In the interaction picture, and after the Bo
approximation, the master equation is given by@34#

]r I~ t !

]t
52

1

\2 E
0

t

TrR†VI~ t !,@VI~ t8!,rR~0!r I~ t8!#‡dt8,

~A1!
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whereV(t) is the interaction Hamiltonian for the system a
reservoir, which in the rotating wave approximation is giv
by

VI~ t !52
i

2
\(

l
@Vl

~1!S1
1~ t !al~ t !2~Vl

~1!!* al
†~ t !S1

2~ t !

1Vl
~2!S2

1~ t !al~ t !2~Vl
~2!!* al

†~ t !S2
2~ t !#. ~A2!

We specifically assume the system is a three-level atom
the cascade configuration~Fig. 1! where Si

1(t) @Si
2(t)# is

the raising@lowering# operator of thei th transition (i 51,2).
The vacuum Rabi frequenciesVl

(1) andVl
(2) are given by

Vl
~1!5~mW 21•eWl!S 2vl

\e0VD 1/2

D~vl! ~A3!

and

Vl
~2!5~mW 32•eWl!S 2vl

\e0VD 1/2

D~vl!, ~A4!

whereeWl is the unit polarization vector,mW 21 andmW 32 are the
matrix elements for the transition dipole moments, resp
tively, for the u2&↔u1& and u3&↔u2& transitions. The
frequency-dependent parameterD(vl) represents the mod
function at the position of the atom@30,31#. The system is
coupled to a multimode reservoir, which in a squeez
vacuum state is characterized by the following correlat
functions of the field operators:

^alam
† &5N~vl!11, vl5vm ,

^al
†am&5N~vl!, vl5vm ,

~A5!

^alam&5M ~vl!, vl1vm52vs ,

^al
†am

† &5M* ~vl!, vl1vm52vs .

In Eq. ~A5! the parametersN(vl) andM (vl) character-
ize squeezing such thatuM (vl)u2<N(vl)@N(2vs2vl)
11#, where equality holds for a minimum uncertainty sta
andvs is the carrier frequency of the squeezed vacuum fie
The complex parameter M (vl)5M (2vs2vl)
5uM (vl)uexp(iws), whereuM (vl)u is the degree of squeez
ing andws is the phase of the squeezed vacuum, results f
the correlations between the field mode at frequencyvl , and
the mode at frequency 2vs2vl . The parameterN(vl) is
proportional to the number of photons in the field mod
NonzeroM implies that the reservoir density operatorrR(0)
does not commute with the reservoir Hamiltonian; thus
squeezed vacuum is not a reservoir stationary state.
in

c-

d
n

,
.

m

.

e

The couplingVI(t) can be written as a linear combinatio
of the products of the systemSa and reservoirRa operators,

VI5(
a

Sa~ t !Ra~ t !, ~A6!

whereSa5Sj
6 andRa56 1

2 (lVl
( j )al

6 exp(6ivlt) ( j 51,2).
Rewriting Eq. ~A1! in terms of Eq.~A6!, expanding the
double commutator, and obeying the cyclic properties of
trace, we find that

i\
]r I~ t !

]t
5(

a
^Ra~ t !&@Sa~ t !,r I~0!#

1
1

i\ (
ab

E
0

t

dt^Ra~ t !Rb~ t2t!&

3@Sa~ t !,Sb~ t2t!r I~ t2t!#

1
1

i\ (
ab

E
0

t

dt^Rb~ t2t!Ra~ t !&

3@Sb~ t2t!r I~ t2t!,Sa~ t !#, ~A7!

where we have made the substitutiont85t2t. In Eq. ~A7!,

^Ra~ t !&5TrR@rR~0!Ra~ t !#,
~A8!

^Ra~ t1!Rb~ t2!&5TrR@rR~0!Ra~ t1!Rb~ t2!#

are the first- and second-order reservoir correlation functio
Generally, the first-order correlation function depends
time and the second-order correlation function depends
the time difference. Typically, the correlation functions
Eq. ~A8! decay to zero within a very short correlation tim
tc , that is,

^Ra~ t !&→0, t@tc ~A9!

^Ra~ t1!Rb~ t2!&→0, ut12t2u@tc .

If the system evolves on a much longer time scale than
reservoir correlation timetc then the reservoir can be con
sidered Markovian. Previous Markovian master equations
a system interacting with a squeezed vacuum@2,8,9# have
relied on the squeezed vacuum beingd correlated on the time
scales of the natural atomic lifetime and the Rabi oscillatio
induced by the driving fields, which translates in the fr
quency domain to making the bandwidth of the squee
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vacuum,GS , much larger than the natural atomic linewid
and the Rabi frequency, that is,GS@V,G, whereG is the
natural atomic bandwidth.

The main idea here is to first ‘‘dress’’ the atom by th
driving fields, and next couple the remaining dressed-a
system to the frequency-dependent reservoir. In the dres
atom basis, the ‘‘system’’ evolves on the much longer tim
scale,G21 as we have effectively removed the short tim
scale Rabi oscillations from the interaction picture syst
density operator. Thus, deriving the master equation in
dressed-atom basis allows us to consider finite-bandw
effects, as we only have to assume that,GS@G, i.e., the
reservoir bandwidth is much greater than the natural ato
bandwidth.

The dressed-atom states are the eigenstates of the H
tonian @29#

HS5HAF1H IN , ~A10!

where

HAF5\@v1u2&^2u1~v11v2!u3&^3u#1\v1b1
†b1

1\v2b2
†b2 ~A11!

is the unperturbed Hamiltonian of the cascade three-le
atom plus driving laser fields of frequenciesv1 andv2 , and

H IN5 1
2 i\g1~S1

1b12b1
†S1

2!1 1
2 i\g2~S2

1b22b2
†S2

2!
~A12!

is the interaction Hamiltonian between the atom and the d
ing fields. In Eq.~A11! and Eq.~A12! b1(b2) and b1

†(b2
†)

are, respectively, the annihilation and creation operators
the driving field of frequencyv1(v2) and g1(g2) are the
coupling constants between the atom and the quantized
ing field. We assume that the driving fields are single-mo
laser fields in the coherent statesua1& andua2&. The dressed-
atom states of the coupled system will be designatedu i ,n,q&,
where for convenience we writen5n11n2 as the total num-
ber of photons in the laser fields andq5n12n2 as the pho-
ton number difference. The states of the uncoup
atom1driving fields system are given b
u i ,n1 ,n2&5u i & ^ un1& ^ un2&. We assume that the mean ph
ton numbern̄i5ua i u2 of the driving fields is much larger tha
the width of the photon numberDn; then the laser field
fluctuations are not significant at frequencies removed fr
the driving frequency.

For the cascade configuration, the undressed states~eigen-
states ofHAF) form manifolds composed of threefold near
degenerate statesu1,n111,n211&, u2,n1 ,n211&, and
u3,n1 ,n2& of the energy

Enq5\@~n111!v11~n211!v2#. ~A13!
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The inclusion of the interactionH IN lifts the degeneracy
resulting in an energy level scheme composed of trip
~Fig. 2!,

u1,n,q&5
1

&V
~ iV1u1,n111,n211&1Vu2,n1 ,n211&

2 iV2u3,n1 ,n2&),

u2,n,q&5
1

V
~V2u1,n111,n211&1V1u3,n1 ,n2&),

~A14!

u3,n,q&5
1

&V
~2 iV1u1,n111,n211&1Vu2,n1 ,n211&

1 iV2u3,n1 ,n2&),

with energies

E1nq5Enq2 1
2 \V,

E2nq5Enq , ~A15!

E3nq5Enq1 1
2 \V,

whereV5AV1
21V2

2, with V15uV1uexp(iw1)5g1An̄1, and
V25uV2uexp(iw2)5g2An̄2. We have assumed the drivin
fields to be sufficiently intense that the variation of then
photon Rabi frequencies withn1 andn2 has been neglecte
and the photon numbers replaced by the average ph
numbersn̄1 and n̄2 in the laser modes. We set the phase
the lasers,w1 andw2 , equal to zero for convenience. Fro
the energy-level diagram in Fig. 2, it is apparent that
possibility of fluorescence exists at the frequencies,

v i j 5\21~Einq2Ejnq!, ~A16!

given by

v115v225v335v2 ,

v215v325v21
V

2
,

v125v235v22
V

2
, ~A17!

v315v21V,

v135v22V.

These transition frequencies between the dressed states
cate that up to five lines can be observed in the fluoresce
spectrum.

The transformation in Eq.~A14! is unitary and can be
easily inverted to give the undressed atomic states in te
of the dressed states. This allows us to express the orig
atomic operators as a linear combination of their dress
state counterparts in the interaction picture; thus
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S1
1~ t !5@S1

2~ t !#* 5exp@2 i ~HS1HR!t/\#u2,n1 ,n2&^1,n111,n2uexp@ i ~HS1HR!t/\#

5FS1~v1!1S1S v12
V

2 DexpS 2 i
V

2
t D1S1S v11

V

2 DexpS i
V

2
t D

1S1~v12V!exp~2 iVt !1S1~v11V!exp~ iVt !Gexp~ iv1t !, ~A18!

and

S2
1~ t !5@S2

2~ t !#* 5exp@2 i ~HS1HR!t/\#u2,n1 ,n2&^3,n1 ,n211uexp@ i ~HS1HR!t/\#

5FS1~v2!1S1S v22
V

2 DexpS 2 i
V

2
t D1S1S v21

V

2 DexpS i
V

2
t D

1S1~v22V!exp~2 iVt !1S1~v21V!exp~ iVt !Gexp~ iv2t !, ~A19!
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whereSi
1@v i6( l /2) V# are the raising operators for the tra

sitions between the dressed states separated by the frequ
v i6( l /2) V. We now substitute Eqs.~A18! and ~A19! into
the master equation and make the Markoff approximatio

As the system now evolves on a time scale of the or
G21, provided thatGtc!1 we can replacer I(t2t) with
r I(t) in Eq. ~A7! as we assume that over the time scale
which the second-order reservoir correlation functions
nonzero,r I(t2t) would have hardly changed fromr I(t),
thus the system can be considered to be Markovian. The
dependence of the system operators is given by Eqs.~A18!
and ~A19!. For t@tc , we may ignore the first term in Eq
~A7! as a result of Eq.~A8! and then the master equatio
becomes

i\
]r I~ t !

]t
52(

ab
vab

1 @Sa~ t !,Sb~ t !r I~ t !#

2(
ab

vab
2 @r I~ t !Sb~ t !,Sa~ t !#, ~A20!

wherevab
1 andvab

2 are the reservoir spectral densities

vab
1 5

1

\2 E
0

t

dt exp@2 i ~vb2 i e!t#^Ra~ t !Rb~ t2t!&,

~A21!

vab
2 5

1

\2 E
0

t

dt exp@2 i ~vb2 i e!t#^Rb~ t2t!Ra~ t !&.

The reservoir spectral densities contain the mathematic
convenient factor exp(2et), where we assume thate→01

for t@tc .
In order to evaluate the reservoir spectral densities

which there would be a total of 400, we begin by making t
rotating-wave approximation@where we assume that an
terms oscillating at frequencies other than 2v1 , 2v2 , and
(v11v2) are ignored# and take into account the comple
conjugate relationships. With this the number of spec
densities may be reduced to 80. Defining
ncy

r

e

e

lly

f
e

l

Si5S1S v11
l

2
V DexpF i S v11

l

2
V D t G , ~A22!

where i P@1,2,3,4,5# and l P@0,21,1,22,2#. The sets, of
which i and l are members are one to one and onto m
pings. Similarly, we label

Sj5~Si
1!* , ~A23!

where j P@6,7,8,9,10# and maps one to one and onto the s
of which l is a member. For the second transition frequen
v2 ,

Sk5S1S v21
l

2
V DexpF i S v21

l

2
V D t G ,

~A24!

Sp5~Sk
1!* ,

where kP@11,12,13,14,15#, pP@16,17,18,19,20# and the
mapping ontol is the same as before.

The corresponding reservoir operators may be written
the form

R1,2,3,4,552
1

2
i\(

l
Vl

~1!al exp~2 ivlt !,

R6,7,8,9,105
1

2
i\(

l
Vl

~1!* al
† exp~ ivlt !,

~A25!

R11,12,13,14,1552
1

2
i\(

l
Vl

~2!al exp~2 ivlt !,

R16,17,18,19,205
1

2
i\(

l
Vl

~2!* al
† exp~ ivlt !.

It would be time consuming to list all the reservoir spect
densities, therefore we settle for an example, such as



it

se
cy
ing
ifts
re
ay

ation
an

e-

the
ll

56 4137PHASE-DEPENDENT FLUORESCENCE LINEWIDTH . . .
v11
1 ~ t !5

1

\2 E
0

t

dt exp@2 i ~v12 i e!t#^R1~ t !R1~ t2t!&,

52
1

4 (
lm

Vl
~1!Vm

~1! exp@2 i ~vm1vl!t#

3E
0

t

dt exp@2 i ~v12vm2 i e!t#^alam&. ~A26!

To evaluate the integral in Eq.~A26! we need to make a
statement concerning the type of reservoir interacting w
the system. From Eq.~A5! we see that Eq.~A26! becomes

v11
1 ~ t !52

1

4 (
lm

Vl
~1!Vm

~1! exp@2 i ~vm1vl!t#

3E
0

t

dt exp@2 i ~v12vm2 i e!t#M ~vl!.

~A27!

The master equation is evaluated at timest@tc , and choos-
ing e sufficiently small that exp(2etc)!1, the time integral
in Eq. ~A27! may be evaluated to give

E
0

t

dt exp@2 i ~D2 i e!t#5
2 i

D2 i e
, ~A28!

which in the limit e→01 reduces to

pd~D!2 iP
1

D
, ~A29!
A

n

et

e

h

where P is the principal Cauchy value and in this ca
D5v12vm . The principal Cauchy values lead to frequen
shifts of the atomic spectral lines as a result of the coupl
to the large number of modes of the reservoir. These sh
are of no concern to us at this time, therefore we will igno
them. Due to the large number of reservoir modes, we m
assume that they are closely spaced, and then the summ
in Eq. ~A27! may be approximated to a good degree by
integral over frequency space, that is,

(
l
→E dvlr~vl!, ~A30!

where r(vl) is the density of the reservoir modes in fr
quency space. Thus Eq.~A27! becomes

v11
1 ~ t !52

1

4 E dvmr~vm!V2vs2vm

~1! Vvm

~1!

3exp~2 i2vst !M ~vm!pd~v12vm!

52
1

2
M ~v1!G11exp~22ivst !, ~A31!

where we have defined

G115
p

2
@Vv1

~1!Vv1

~1!r~v1!#5uG11uuD~v1!u2, ~A32!

whereuG11u5 (p/2) umŴ 21•eŴlu2(2v1 /\e0V). All other reser-
voir spectral densities follow a similar derivation.

With the reservoir spectral densities, and making
rotating-wave approximation, in which we may ignore a
terms oscillating at frequencies 2v i andv i1v j , we obtain
the master equation~3!.
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