1,823 research outputs found

    Scaling behavior of temperature-dependent thermopower in CeAu2Si2 under pressure

    Full text link
    We report a combined study of in-plane resistivity and thermopower of the pressure-induced heavy fermion superconductor CeAu2Si2 up to 27.8 GPa. It is found that thermopower follows a scaling behavior in T/T* almost up to the magnetic critical pressure pc ~ 22 GPa. By comparing with resistivity results, we show that the magnitude and characteristic temperature dependence of thermopower in this pressure range are governed by the Kondo coupling and crystal-field splitting, respectively. Below pc, the superconducting transition is preceded by a large negative thermopower minimum, suggesting a close relationship between the two phenomena. Furthermore, thermopower of a variety of Ce-based Kondo-lattices with different crystal structures follows the same scaling relation up to T/T* ~ 2.Comment: 6 pages, 4 figures. Supplementary Material available on reques

    Effect of disorder on the pressure-induced superconducting state of CeAu2Si2

    Full text link
    CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor which shows very unusual interplay between superconductivity and magnetism under pressure. Here we compare the results of high-pressure measurements on single crystalline CeAu2Si2 samples with different levels of disorder. It is found that while the magnetic properties are essentially sample independent, superconductivity is rapidly suppressed when the residual resistivity of the sample increases. We show that the depression of bulk Tc can be well understood in terms of pair breaking by nonmagnetic disorder, which strongly suggests an unconventional pairing state in pressurized CeAu2Si2. Furthermore, increasing the level of disorder leads to the emergence of another phase transition at T* within the magnetic phase, which might be in competition with superconductivity.Comment: 7 pages, 7 figure

    Probing the phase diagram of CeRu_2Ge_2 by thermopower at high pressure

    Full text link
    The temperature dependence of the thermoelectric power, S(T), and the electrical resistivity of the magnetically ordered CeRu_2Ge_2 (T_N=8.55 K and T_C=7.40 K) were measured for pressures p < 16 GPa in the temperature range 1.2 K < T < 300 K. Long-range magnetic order is suppressed at a p_c of approximately 6.4 GPa. Pressure drives S(T) through a sequence of temperature dependences, ranging from a behaviour characteristic for magnetically ordered heavy fermion compounds to a typical behaviour of intermediate-valent systems. At intermediate pressures a large positive maximum develops above 10 K in S(T). Its origin is attributed to the Kondo effect and its position is assumed to reflect the Kondo temperature T_K. The pressure dependence of T_K is discussed in a revised and extended (T,p) phase diagram of CeRu_2Ge_2.Comment: 7 pages, 6 figure

    Strain enhancement of superconductivity in CePd2Si2 under pressure

    Full text link
    We report resistivity and calorimetric measurements on two single crystals of CePd2Si2 pressurized up to 7.4 GPa. A weak uniaxial stress induced in the pressure cell demonstrates the sensitivity of the physics to anisotropy. Stress applied along the c-axis extends the whole phase diagram to higher pressures and enhances the superconducting phase emerging around the magnetic instability, with a 40% increase of the maximum superconducting temperature, Tc, and a doubled pressure range. Calorimetric measurements demonstrate the bulk nature of the superconductivity.Comment: 4 pages, 4 figure

    Effect of pressure cycling on Iron: Signatures of an electronic instability and unconventional superconductivity

    Get PDF
    High pressure electrical resistivity and x-ray diffraction experiments have been performed on Fe single crystals. The crystallographic investigation provides direct evidence that in the martensitic bcchcpbcc \rightarrow hcp transition at 14 GPa the {110}bcc\lbrace 110\rbrace_{bcc} become the {002}hcp\lbrace 002\rbrace_{hcp} directions. During a pressure cycle, resistivity shows a broad hysteresis of 6.5 GPa, whereas superconductivity, observed between 13 and 31 GPa, remains unaffected. Upon increasing pressure an electronic instability, probably a quantum critical point, is observed at around 19 GPa and, close to this pressure, the superconducting TcT_{c} and the isothermal resistivity (0<T<3000<T<300\,K) attain maximum values. In the superconducting pressure domain, the exponent n=5/3n = 5/3 of the temperature power law of resistivity and its prefactor, which mimics TcT_{c}, indicate that ferromagnetic fluctuations may provide the glue for the Cooper pairs, yielding unconventional superconductivity

    Probing the extended non-Fermi liquid regimes of MnSi and Fe

    Full text link
    Recent studies show that the non-Fermi liquid (NFL) behavior of MnSi and Fe spans over an unexpectedly broad pressure range, between the critical pressure p_c and around 2p_c. In order to determine the extension of their NFL regions, we analyze the evolution of the resistivity rho(T) A(p)T^n at higher pressures. We find that in MnSi the n=3/2 exponent holds below 4.8 GPa=3 p_c, but it increases above that pressure. At 7.2 GPa we observe the low temperature Fermi liquid exponent n=2 whereas for T>1.5 K, n=5/3. Our measurements in Fe show that the NFL behavior rho T^{5/3} extends at least up to 30.5 GPa, above the entire superconducting (SC) region. In the studied pressure range, the onset of the SC transition reduces by a factor 10 down to T_c^onset(30.5 GPa)=0.23 K, while the A-coefficient diminishes monotonically by around 50%.Comment: 2 pages, 2 figures, Proceedings SCES 200

    Hidden Variables in Bipartite Networks

    Full text link
    We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables which control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations

    Heavy Fermion superconductor CeCu2_2Si2_2 under high pressure: multiprobing the valence crossover

    Full text link
    The first heavy fermion superconductor CeCu2_2Si2_2 has not revealed all its striking mysteries yet. At high pressures, superconductivity is supposed to be mediated by valence fluctuations, in contrast to ambient pressure, where spin fluctuations most likely act as pairing glue. We have carried out a multiprobe (electric transport, thermopower, ac specific heat, Hall and Nernst effects) experiment up to 7GPa7 \text{GPa} on a high quality CeCu2_2Si2_2 single crystal. Reliable resistivity data reveal for the first time a scaling behavior close to the supposed valence transition, and allow to locate the critical end point at 4.5±0.2GPa4.5\pm0.2 \text{GPa} and a slightly negative temperature. In the same pressure region, remarkable features have also been detected in the other physical properties, acting as further signatures of the Ce valence crossover and the associated critical fluctuations.Comment: 13 pages, 14 figure

    High-pressure transport properties of CeRu_2Ge_2

    Full text link
    The pressure-induced changes in the temperature-dependent thermopower S(T) and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the single-site Anderson model. The Ce-ions are treated as impurities and the coherent scattering on different Ce-sites is neglected. Changing the hybridisation \Gamma between the 4f-states and the conduction band accounts for the pressure effect. The transport coefficients are calculated in the non-crossing approximation above the phase boundary line. The theoretical S(T) and \rho(T) curves show many features of the experimental data. The seemingly complicated temperature dependence of S(T) and \rho(T), and their evolution as a function of pressure, is related to the crossovers between various fixed points of the model.Comment: 9 pages, 10 figure
    corecore