4,532 research outputs found

    Precision gage measures ultrahigh vacuum levels

    Get PDF
    Ionization gage in which internally generated X rays are minimized is described. This gage permits the measurement of gas pressures in ultrahigh systems of micro-pico torr /10-18/

    Migration of latent fingermarks on non-porous surfaces:observation technique and nanoscale variations

    Get PDF
    Latent fingermark morphology was examined over a period of approximately two months. Variation in topography was observed with atomic force microscopy and the expansion of the fingermark occurred in the form of the development of an intermediate area surrounding the main fingermark ridge. On an example area of a fingermark on silicon, the intermediate region exists as a uniform 4nm thick deposit; on day 1 after deposition this region extends approximately 2µm from the edge of the main ridge deposit and expands to a maximum of ~ 4µm by day 23. Simultaneously the region breaks up, the integrity is compromised by day 16, and by day 61 the area resembles a series of interconnected islands, with coverage of approximately 60%. Observation of a similar immediate area and growth with time on surfaces such as Formica was possible by monitoring the mechanical characteristics of the fingermark and surfaces though phase contrast in tapping mode AFM. The presence of this area may affect fingermark development, for example affecting the gold distribution in vacuum metal deposition. Further study of time dependence and variation with donor may enable assessment of this area to be used to evaluate the age of fingermarks

    Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering

    Full text link
    We investigated the low energy excitations in the parent compound NdFeAsO of the Fe-pnictide superconductor in the μ\mueV range by a back scattering neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed inelastic peaks at E = 1.600 ±0.003μ \pm 0.003 \mueV at T = 0.055 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at about 6 K. We interpret the inelastic peaks to be due to the transition between hyperfine-split nuclear level of the 143^{143}Nd and 145^{145}Nd isotopes with spin I=7/2I = 7/2. The hyperfine field is produced by the ordering of the electronic magnetic moment of Nd at low temperature and thus the present investigation gives direct evidence of the ordering of the Nd magnetic sublattice of NdFeAsO at low temperature

    Incoherent dynamics in neutron-matter interaction

    Get PDF
    Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and using the Fermi pseudopotential we show that the commutator term is an optical potential leading to well-known relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse scattering and attenuation of the coherent beam into account, thus warranting fulfilment of the optical theorem. The relevance of this analysis to experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.

    STATISTICAL ANALYSIS OF FIELD WHEAT VARIETAL PERFORMANCE TRIALS

    Get PDF
    The purpose of this research was to formulate statistical models and assumptions to apply to the problem of comparing wheat varieties for yielding ability among locations within seasons and over seasons. The methodology could just as well be applied to field testing of other crops for yield or other characteristics of interest (test weight, protein level, etc.) The methodology approaches the problem of comparing varieties by comparing how well each measures up when matched against some common checks. For each variety, the basic data are differences in yield between the variety and the average yield of the checks at different testing locations within a season and over seasons. The differences are assumed to be nature-randomized sample values from a population of differences created by different environments within seasons and over seasons. The methodology is illustrated by application to hard red spring wheat varieties in the U. S. N orthem Plains. Results showing varieties in descending order by differential yielding ability, together with standard errors and probabilities when testing null hypotheses, provide a consolidated summary of elite varieties in testing programs

    The recoverability of fingerprints on paper exposed to elevated temperatures - Part 2: natural fluorescence

    Get PDF
    Previous work by the authors [1] investigated the recoverability of fingerprints on paper which had been exposed to elevated temperatures by comparing various chemical enhancement techniques (ninhydrin, 1,8-diazafluoren-9-one (DFO), and physical developer (PD)). During that study, it became apparent, as a consequence of observations made in operational work [2], that fingerprints on paper subjected to 150ËšC fluoresced under examination with green light of waveband 473-548nm with a 549nm viewing filter. This work examined the three types of prints (eccrine, sebaceous, and ungroomed) after 20 min exposure to the temperature range 110ËšC to 190ËšC (in 10ËšC increments) and found that the eccrine fingerprints fluoresced more brightly. This indicated that it was a component of the eccrine deposit which was causing the fluorescence. Luminance measurements found that the maximum fluorescence was experienced at 170ËšC on both types of paper. As a consequence, eccrine heat-treated fingerprints were viewed under violet-blue (350-469nm), blue (352-509nm), and green light (473-548nm) which indicated that the greatest luminance intensities were obtained under blue light and the smallest under green light. In order to determine what component of the eccrine fingerprint was causing this fluorescence, five of the most prevalent amino acids (alanine, aspartic acid, glycine, lysine, and serine) [3-4] were exposed to this temperature range. The luminance measurements were taken under exposure to the green light in order for the minimum fluorescence to be observed, with an assumption that blue-violet or blue illumination will provide brighter fluorescence in practice. The results indicated that four of the amino acids are behaving similarly across the temperature range, but with slightly different luminance measurements, but all are exhibiting some level of fluorescence. Thermal degradation products of alanine and aspartic acid have been suggested by Richmond-Aylor et al. [5]. The structure of these thermal degradation products is cyclic in nature, and as such, there is a possibility that two of these products would fluorescence. Sodium chloride and urea were also exposed to the temperature range and they also fluoresced to some extent. This work shows that eccrine fingerprints that have been exposed to temperatures of between 130ËšC to 180ËšC will fluoresce under violet-blue, blue, and green light. This level of fluorescence for ungroomed fingerprints is much less but this will be dependent on the individual, the more eccrine the deposit, the stronger the fluorescence. This work shows that the amino acids, sodium chloride, and urea present in fingerprint deposits are all contributing to the fluorescence of the print, but may not be the sole contributor as other eccrine components have not yet been tested

    Loss of redundant gene expression after polyploidization in plants

    Full text link
    Based on chromosomal location data of genes encoding 28 biochemical systems in allohexaploid wheat,Triticum aestivum L. (genomes AABBDD), it is concluded that the proportions of systems controlled by triplicate, duplicate, and single loci are 57%, 25%, and 18% respectively

    Metamorphism of CO and CO-like chondrites and comparisons with type 3 ordinary chondrites

    Get PDF
    In order to explore their metamorphic history, thermoluminescence data have been obtained for 10 CO or CO-related chondrites from the Antarctic. Six have TL properties indicating low to intermediate levels of metamorphism, while Lewis Cliff 85332 and three paired meteorites from MacAlpine Hills (87300,87301 and 88107) have unusual TL properties similar to those of the very primitive Colony and Allan Hills A77307 CO-related chondrites. Cathodoluminescence photomosaics of nine well-studied CO chondrites are also presented and compared with similar data for the type 3 ordinary chondrites in which CL properties vary systematically with metamorphism. It is concluded that the CO chondrites, like the ordinary chondrites, form a metamorphic sequence and may be subdivided in an analogous manner using TL, CL and other petrographic and compositional data. Definitions for CO chondrites of the petrologic types 3.0-3.9 are proposed. However, it is stressed that the thermal history of the CO and ordinary chondrites is quite different, the range of equilibration for the CO chondrites is similar to the ordinary chondrites, but the former have not experienced temperatures above those experienced by type 3.5 ordinary chondrites (probably around 600℃). Presumably the CO chondrites spent longer times at lower temperatures. A CL photomosaic of Murchison is also presented, which has two features in common with the type 3.0-3.1 CO and ordinary chondrites; type I chondrules whose mesostases produce yellow CL (due to an unidentified but highly metamorphism-sensitive phase) and fine-grained matrix with red CL due to forsterite. Haloes of matrix material around chondrules and other objects in Murchison are thought to be due to aqueous destruction of those objects, and Fezoning in olivines in chondrules with broad haloes is also throught to be due to aqueous processes

    High cooperativity coupling of electron-spin ensembles to superconducting cavities

    Full text link
    Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. We demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.Comment: 4pgs, 4 figure
    • …
    corecore