8,987 research outputs found

    Truth-telling to the patient, family, and the sexual partner: a rights approach to the role of healthcare providers in adult HIV disclosure in China.

    Get PDF
    Patients' rights are central in today's legislation and social policies related to health care, including HIV care, in not only Western countries but around the world. However, given obvious socio-cultural differences it is often asked how or to what extent patients' rights should be respected in non-Western societies such as China. In this paper, it is argued that the patients' rights framework is compatible with Chinese culture, and that from the perspective of contemporary patient rights healthcare providers have a duty to disclose truthfully the diagnosis and prognosis to their patients, that the Chinese cultural practice of involving families in care should - with consent from the patient - be promoted out of respect for patients' rights and well-being, and that healthcare providers should be prepared to address the issue of disclosing a patient's HIV status to sexual partner(s). Legally, the provider should be permitted to disclose without consent from the patient but not obliged to in all cases. The decision to do this should be taken with trained sensitivity to a range of ethically relevant considerations. Post-disclosure counseling or psychological support should be in place to address the concerns of potentially adverse consequences of provider-initiated disclosure and to maximize the psychosocial and medical benefits of the disclosure. There is an urgent need for healthcare providers to receive training in ethics and disclosure skills. This paper concludes also with some suggestions for improving the centerpiece Chinese legislation, State Council's "Regulations on AIDS Prevention and Control" (2006), to further safeguard the rights and well-being of HIV patients

    Nodeless superconductivity arising from strong (pi,pi) antiferromagnetism in the infinite-layer electron-doped cuprate Sr1-xLaxCuO2

    Full text link
    The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two known families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates

    Doping evolution and polar surface reconstruction of the infinite-layer cuprate Sr1x_{1-x}Lax_{x}CuO2_{2}

    Get PDF
    We use angle-resolved photoemission spectroscopy to study the doping evolution of infinite-layer Sr1x_{1-x}Lax_{x}CuO2_{2} thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of the superconducting cuprate parent compounds. As carriers are added to the system, a continuous evolution from charge-transfer insulator to superconductor is observed, with the initial lower Hubbard band pinned well below the Fermi level and the development of a coherent low-energy band with electron doping. This two-component spectral function emphasizes the important role that strong local correlations play even at relatively high doping levels. Electron diffraction probes reveal a p(2×2){p(2\times2)} surface reconstruction of the material at low doping levels. Using a number of simple assumptions, we develop a model of this reconstruction based on the polar nature of the infinite-layer structure. Finally, we provide evidence for a thickness-controlled transition in ultrathin films of SrCuO2_2 grown on nonpolar SrTiO3_3, highlighting the diverse structural changes that can occur in polar complex oxide thin films

    Simulation studies for dielectric wakefield programme at CLARA facility

    Full text link
    Short, high charge electron bunches can drive high magnitude electric fields in dielectric lined structures. The interaction of the electron bunch with this field has several applications including high gradient dielectric wakefield acceleration (DWA) and passive beam manipulation. The simulations presented provide a prelude to the commencement of an experimental DWA programme at the CLARA accelerator at Daresbury Laboratory. The key goals of this program are: tunable generation of THz radiation, understanding of the impact of transverse wakes, and design of a dechirper for the CLARA FEL. Computations of longitudinal and transverse phase space evolution were made with Impact-T and VSim to support both of these goals.Comment: 10 Pages, 4 Figures, Proceedings of EAAC2017 Conferenc

    Data assimilation with an improved particle filter and its application in the TRIGRS landslide model

    Get PDF
    Particle filters have become a popular algorithm in data assimilation for their ability to handle nonlinear or non-Gaussian state-space models, but they have significant disadvantages. In this work, an improved particle filter algorithm is proposed. To overcome the particle degeneration and improve particles' efficiency, the processes of particle resampling and particle transfer are updated. In this improved algorithm, particle propagation and the resampling method are ameliorated. The new particle filter is applied to the Lorenz-63 model, and its feasibility and effectiveness are verified using only 20 particles. The root-mean-square difference (RMSD) of estimations converges to stable when there are more than 20 particles. Finally, we choose a peristaltic landslide model and carry out an assimilation experiment of 20 days. Results show that the estimations of states can effectively correct the running offset of the model and the RMSD is convergent after 3 days of assimilation.</p

    Resolving singular forces in cavity flow: Multiscale modeling from atoms to millimeters

    Full text link
    A multiscale approach for fluid flow is developed that retains an atomistic description in key regions. The method is applied to a classic problem where all scales contribute: The force on a moving wall bounding a fluid-filled cavity. Continuum equations predict an infinite force due to stress singularities. Following the stress over more than six decades in length in systems with characteristic scales of millimeters and milliseconds allows us to resolve the singularities and determine the force for the first time. The speedup over pure atomistic calculations is more than fourteen orders of magnitude. We find a universal dependence on the macroscopic Reynolds number, and large atomistic effects that depend on wall velocity and interactions.Comment: 4 pages,3 figure

    Expression analysis of four flower-specific promoters of Brassica spp. in the heterogeneous host tobacco

    Get PDF
    The 5’-flanking region of ca. 1200 bp upstream of the translation start site (TSS) of a putative cell wall protein gene was cloned from Brassica campestris, B. chinensis, B. napus and B. oleracea, and transferred to tobacco via Agrobacterium-mediation after fused to promoter-less beta-glucuronidase(GUS) reporter gene. Histochemical GUS staining and fluorometric quantification of the transgenic tobacco showed that all four promoters conferred GUS expression in petal, anther, pollen and stigma ofthe flower, not in any vegetative organs or tissues of the plants. A series of 5’-end deletion of the promoter from B. napus disclosed that the region -104 to -17 relative to TSS was sufficient to confer flower-specific expression, and the region -181 to -161 played a key role in maintaining strong drivingpower of the promoter. Besides, several enhancer and suppressor regions were also identified in the promoter
    corecore