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Abstract. Particle filters have become a popular algorithm
in data assimilation for their ability to handle nonlinear or
non-Gaussian state-space models, but they have significant
disadvantages. In this work, an improved particle filter al-
gorithm is proposed. To overcome the particle degeneration
and improve particles’ efficiency, the processes of particle re-
sampling and particle transfer are updated. In this improved
algorithm, particle propagation and the resampling method
are ameliorated. The new particle filter is applied to the
Lorenz-63 model, and its feasibility and effectiveness are
verified using only 20 particles. The root-mean-square differ-
ence (RMSD) of estimations converges to stable when there
are more than 20 particles. Finally, we choose a peristaltic
landslide model and carry out an assimilation experiment of
20 days. Results show that the estimations of states can effec-
tively correct the running offset of the model and the RMSD
is convergent after 3 days of assimilation.

1 Introduction

Mountainous areas all over the world suffer frequent land-
slide disasters. Works of landslide monitoring, analysis and
forecasting are crucial. Many numerical modeling methods
of slope evolution, such as discontinuous deformation anal-
ysis (DDA) (Shi, 1992; Jing et al., 2001; Ma et al., 2011)
and the distinct element methods (DEMs) (Lorig and Hobbs,
1990; Marcato et al., 2007; Li et al., 2012), have been pro-
posed and developed recently. Iverson proposed a mathemat-
ical model that uses Richards’ equation to evaluate effects of
landslides in response to rainfall infiltration (Iverson, 2000).
The Transient Rainfall Infiltration and Grid-Based Regional

Slope-Stability (TRIGRS) model is a raster-based model and
depends on time of transient rainfall infiltration (Baum et
al., 2008). Jiang adopted the ensemble Kalman filter land-
slide movement model in relation to hydrological factors,
which introduced data assimilation (DA) to landslide eval-
uation (Jiang et al., 2016).

DA is a common approach to estimating optimal states in
dynamic systems. With DA algorithms and operators, DA
merges different scales of observations into dynamic mod-
els to take advantage of all the information. Many DA algo-
rithms have been developed and improved in recent years,
and particle filters (PFs) are a popular algorithm for their
ability to handle nonlinear and non-Gaussian distributed
models (Arulampalam et al., 2002; Moradkhani et al., 2005).
The application and improvement of PFs has been researched
recently in DA and other fields.

Salamon and Feyen (2009) applied the residual resampling
particle filter (RRPF) to assess parameter, precipitation and
predictive uncertainty in a rainfall–runoff model. Thirel et
al. (2013) assimilated snow-covered areas in physical dis-
tributed hydrological models and MODIS satellite data to
improve pan-European flood forecasts. Mattern et al. (2013)
carried out assimilation experiments for a three-dimensional
biological ocean model and satellite observations and veri-
fied the feasibility of biological state estimation with sequen-
tial importance resampling (SIR) for realistic models.

However, large computational complexity and particle
degradation or collapse are still disadvantages of PFs. To
solve these problems, some resampling algorithms have been
proposed. One improvement is adding an item related to ob-
servations to make the proposal density dependent on fu-
ture observations; accordingly most particles can situate into
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the range of observation error (van Leeuwen, 2010). This
method can achieve good results using only 10–20 particles
in high-dimensional assimilation experiments. But the num-
ber of key particles is reduced when the system variance is
larger than the observed variance, and the values of added
items are uncertain. Another improvement is to replace the
duplicating process by generating a Halton sequence in resid-
ual resampling (Zhang et al., 2013). The disordered parti-
cle sets are turned into ordered sets and too few particles
can hardly describe the posterior probability density function
(PDF) better.

In Sect. 2, a new resampling approach is proposed to im-
prove the above method, maintaining both particle diversity
and efficiency. The new algorithm formula and implementa-
tion process are listed in the text. To predict the safety fac-
tor of peristaltic landslide, a simulation experiment, applied
to the Lorenz-63 model using different numbers of particles,
ranging between 10 and 200, is explained in Sect. 3, which
demonstrates that the new method shows efficiency and sen-
sitivity to the number of particles. Finally, a rainfall infiltra-
tion landslide model case is analyzed. We choose an experi-
mental landslide model with a 10×10 size grid, of which the
side length of each grid cell is 10 m. The improved assimila-
tion algorithm is applied to the TRIGRS program to evaluate
the change of factor of safety (FS) in the experimental model.

2 Improvements to residual resampling particle
filtering

In sequential importance sampling, the state vector is repre-
sented by a set of particles:

xk = f (xk−1)+Gk(xk−1)εk−1, (1)

where x is the state vector with initial PDF p(x0), k is the
subscript of time steps, εk−1 is system noise with zero mean
at step k−1 and f (·) is the model operator. InitialN particles
are sampled from p(x0). The observation equation is

zk = h(xk)+ ηk, (2)

where zk is the observation vector at step k, and h(·) is the
observation operator. Weights of particles are calculated by
Eq. (3) and normalized to obtain wik by Eq. (4)

w̃ik = w
i
k−1 ·

p(zk|x
i
k)p(x

i
k|x

i
k−1)

q(xik|x
i
k−1,zk)

, (3)

wik =
w̃ik
N∑
j=1

w̃
j
k

, (4)

where i is the index of particle number, p(zk|xik) is the likeli-
hood of observation and q(xik|x

i
k−1,zk) is the proposal func-

tion.

Residual resampling is a way to solve particle degeneracy,
which is an unavoidable problem in PFs. To keep most par-
ticles effective, low-weight particles are removed and high-
weight particles are duplicated. But with recursive progress
the particle sets can hardly represent the prior PDF due to
declining particle diversity.

Some improvements to the residual resampling algorithm
are proposed in this paper. Firstly, in the process of particle
transferring, we choose

xik = f (x
i
k−1)+ ε̂k−1+ Jk[zk −h(x̂k−1)], (5)

where Jk is a coefficient like the “gain” in an extended
Kalman filter:

Jk = Dk/k−1BTk
[
BkDk/k−1BTk +Rk

]−1

Dk/k−1 = Ak−1Dk−1/k−1ATk−1+Gk−1(x̂k−1)

Qk−1GT
k−1(x̂k−1)

 , (6)

in which Ak , Bk are the linearization parameters of f (·) and
h(·), respectively:

Ak =
∂fk

∂xk
(x̂k), Bk =

∂fk

∂xk
(x̂k/k−1). (7)

Dk/k is the estimation variance of state xk at step k. This pro-
cess is equal to translating particles close to observations. But
the value of Jk is difficult to determine because the variance
of state estimation Dk−1/k−1 in PFs is difficult to compute.
To simplify the calculation, suppose that the translated parti-
cles are a series of virtual observations about the state at step
k. Write the particle set as

XNk/k =
{
xik/k

}
i=1,2,...,N

(8)

and replace Dk−1/k−1 with the variance of particles. To keep
the value of Dk−1/k−1 unchanged before and after transla-
tion, we choose the posterior particles at step k− 1:

Dk−1/k−1 = var(Xk−1/k−1). (9)

Secondly, using the method of Zhang et al. (2013) to com-
pute accumulative copy times (ACTs), each parent particle
with high weight regenerates a set of new particles. Differ-
ently, instead of duplicating or generating a Halton sequence,
it generates a series of normally distributed particles:{
x1
k,x

2
k, . . .,x

ACTi
k

}
∼N

(
xik,Gk

(
xik

))
,

where ACTi is the ACT of the ith particle, and the mean and
variance are related to the value of the parent. Accordingly,
the resampled particle set is composed of some different par-
ticle sets that obey normal distribution. Assuming that the j th
particle of xik is written as xijk , the formula (3) can be written
as

w̃
ij
k = w

i
k−1 ·

p(zk|x
ij
k )p(x

ij
k |x

i
k−1)

q(x
ij
k |x

i
k−1,zk)

. (10)
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Briefly, the improved RRPF in this section can be imple-
mented by the following steps:

– Step 1. Draw initial particles {xi0} from the prior PDF
p(x0).

– Step 2. Compute the mean and variance of posterior par-
ticles at step k-1.

xk−1/k−1 =
1
N

N∑
i=1

xik−1/k−1 (11)

Dk−1/k−1 =
1

N − 1

N∑
i=1

(
xik−1/k−1− xk−1/k−1

)
(
xik−1/k−1− xk/k−1

)T
(12)

– Step 3. Using the new method in this section, compute
the gains of particles.

Dk/k−1 =

[
∂fk

∂xk
(x̂k)

]
Dk−1/k−1

[
∂fk

∂xk
(x̂k)

]T
+Gk−1(x̂k−1)Qk−1GT

k−1(x̂k−1) (13)

Jk =Dk/k−1

[
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]{[
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]
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∂xk
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]T
+Rk

}−1

(14)

– Step 4. Transfer the particles close to the observation:

xik = f (x
i
k−1)+ ε̂k−1+ Jk[zk −h(x̂k−1)]. (15)

– Step 5. In residual resampling, each particle generates
a set of normally distributed progeny particles, and all
progeny sets make

up the resampled particle set:{
xi1k ,x

i2
k , . . .,x

iACTi
k

}
=X

iACTi
k

∼N
(
xik,Gk

(
xik

))
, (16)

{
X

1ACT1
k

,X
2ACT2
k

, . . .,X
N ACTN
k

}
=

{
x∗ik

}
i=1,2,...,N

,

(17)

when ACTi = 0, XiACTi
k is an empty set.

– Step 6. Compute and normalize weights.

w̃ik = w
i
k−1 ·p(zk|x

i
k) (18)

wik =
w̃ik
N∑
j=1

w̃
j
k

(19)

– Step 7. Compute the state estimation.

x̂k/k =

N∑
i=1

x∗ik ·w
i
k, (20)

a measure to assess the accuracy of calculation is the
root mean square difference (RMSD), which is defined
as

RMSD=

√√√√ 1
T

T∑
t=1
(X̂t −X

obs
t )2, (21)

where T is the period of assimilation, and X̂t and Xobs
t

are the assimilated value and the observation of state at
time t , respectively.

3 Application to the Lorenz-63 model

We choose the Lorenz-63 model as an example to test the
improved algorithm (Baines, 2008).

dx
dt
= σ(y− x)

dy
dt
= x(ρ− z)− y

dz
dt
= xy−βz

, (22)

where the constants σ , ρ and β are system parameters
proportional to the Prandtl number, Rayleigh number and
certain physical dimensions of the layer itself. Parameters
are given by dt = 0.01, σ = 10, ρ = 28, β = 8/3, the ob-
servation error σobs =

√
2 and the model transmission er-

ror based on time interval σmod = 2
√
1t . Initialize the fil-

ter with the starting point, which is set to (x0, y0, z0)=

(1.50887,−1.531271,25.46091). The truth is obtained by
the formula of the model recursively. Observations are gen-
erated from the truth by adding a disturbance every 40 steps,
with 1000 recurring steps, and assimilating the observation
with the model when observation exists at the current step
and moving to the next step when there is no observation.

Figure 1 shows the results of the x component using the
new PF with 20 particles. Note that the new PF procedure
is close to the truth with much fewer particles, which is
more efficient than the standard PF procedure with hundreds
of particles. Compute the confidence interval with the 95 %
level using the posterior particles every step. Figure 2 shows
that the intervals contain observations at almost all the steps
at which observations exist. That means particle sets after
translation are closer to observations and true states. The
evolution of all particles is displayed in Fig. 3, in which
most particles are very close to observations except for sev-
eral ones at moments when the state changed obviously. The
RMSD sequence is shown in Fig. 4; it tends to be stable when
the number of particles is more than 20. This means the im-
proved algorithm only needs no fewer than 20 particles.
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Figure 1. Results of the new PF for the Lorenz-63 model of the
x component. The red crosses are observations, the black line is the
true state and the blue line represents the new PF results.

Figure 2. The 95 % confidence interval computed by posterior par-
ticles. The green dashed lines denote the upper and lower limits of
the interval and the red crosses are observations.

4 Application to landslide simulation based on the
TRIGRS model

TRIGRS is a program modeling rainfall infiltration, using an-
alytical solutions for partial differential equations that rep-
resent one-dimensional vertical flow in isotropic, homoge-
neous materials for simply saturated or unsaturated condi-
tions. It computes changes of rainfall pore pressure and FS
with rainfall infiltration. The FS is computed using a simple
infinite-slope model, cell by cell.

In this experiment, the FS is applied to assimilation. It is
calculated as follows:

Fs=
tanφ
tanα

+
c−ϕ(Z, t)γW tanφ
γSZ sinα cosα

, (23)

in which c is soil cohesion, α is slope angle, φ is soil fric-
tion angle, ϕ is the groundwater pressure head depending on
depth Z and time t , γW is groundwater unit weight, and γS is
soil unit weight at saturation.

An example of the 10× 10 grid TRIGRS model is set to
be the background, and each grid is a square with a length

Figure 3. The evolution of posterior particles in time. The green
dashed lines show the traces of all particles; the red crosses denote
the observations.

Figure 4. RMSD of the estimation with respect to particle numbers.
The value is relatively high when the particle number is fewer than
20 and tends to be stable when higher than 20.

of 10 m. The simulated observations are generated from the
FS by adding a disturbance with normal distribution N (0.2,
0.3). Due to the difficulties of determining the parameter ϕ,
the soil friction angle and its high sensitivity to results, we
now generate a set of particles

{
ϕik

}
to form ϕ, in which k

and i are indices of step and particle number, respectively.
The input model variance of ϕ is 2 and observation variance
of FS is 0.3. At each step, ϕ and FS will be updated, and the
updated parameters continue to participate in the next step
of operation as initial parameters. The number of particles
is set to 20 in the PF program. Figure 5 shows the model
running results and the assimilated results of the FS running
for 5 days, 10 days, 15 days and 20 days. In the model run-
ning results, the value of FS is smaller and decreases rapidly,
while in the assimilated results the change is relatively gen-
tle.
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Figure 5. Model results and assimilation results of FS. The maps in the first row are the model running for 5, 10, 15 and 20 days, and those
in the second row are the assimilation results. The horizontal and vertical coordinates in each graph are the grid numbers of each cell.

Figure 6. The distribution variation in groundwater pressure head
(ϕ) with assimilated time. The horizontal and vertical coordinates
in each graph are the grid numbers of each cell.

To evaluate the distribution variation in ϕ, we propose that
the estimation of ϕ is calculated as formula

ϕ̂k/k =

N∑
i=1

ϕik ·w
i
k, (24)

in which wik is calculated using Eqs. (18) and (19). Fig-
ure 6 shows the distribution variation in ϕ running for 5 days,
10 days, 15 days and 20 days. Actually, the estimation of ϕ
uses the same method and particles of the estimation of FS.
Figure 6 shows the distribution variation in ϕ running for 5
days, 10 days, 15 days and 20 days. The change of ϕ esti-
mation in a single cell is illustrated in Fig. 7, considering the
middle unit, grid cell (5, 5).

Figure 7. The changing line of the groundwater pressure head (ϕ)
estimation of grid cell (5, 5) with assimilation time. The value grows
with the evolution of the landslide.

To assess estimations of all grid cells, the RMSD of the
whole grid of points to measure the estimated error is modi-
fied to

RMSDgrid =

√
1
Np

∑
i,j

(X̂ij −X
obs
ij )

2, (25)

where Np is the total number of grid points, and i and j
are the indices of the row and column number, respectively.
The RMSD curve with assimilating days is shown in Fig. 8,
which suggests the value is large on the first 2 days of initial-
ization, fluctuates in the next days and is steady when there
are no observations.
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Figure 8. RMSD line of all grids depending on assimilation time.
The TRIGRS model is assimilated with observations in the first
20 days, and results of days 21–30 are model running results with-
out observations assimilated.

5 Conclusion and discussion

The problems of particle degeneration and efficient expres-
sion of posterior PDF are long-term difficulties that affect
the performance of particle filters. Many resampling methods
can improve effectiveness of particles, but they still need a
large number of samples resulting in a large amount of com-
putation.

In this study, we propose two approaches to improve the
particle filter process. Firstly, for the problem of particle de-
generation, new Gaussian-distributed offspring particles are
generated for each mother particle. This avoids particle du-
plication and maintains particle diversity. Secondly, in order
to improve the propagating efficiency of a priori particles into
a posteriori particles, an additional item is added that is sim-
ilar to the Kalman gain at the step of particle propagation,
which greatly reduces the number of particles required. It
uses only dozens of particles to achieve good results. A sim-
ulation experiment of the Lorenz-63 model is carried out to
validate the feasibility of these methods. The TRIGRS land-
slide model is first proposed for application to the assimila-
tion system. Results show that the assimilation process can
make the estimation close to observations, which proves the
feasibility of applying the improved particle filter to the land-
slide model.

However, some disadvantages are still present. Grid cells
are independent of each other in TRIGRS, and this leads to
the FS estimations possibly being greater than the actual val-
ues. Therefore, the FS estimations only provide a reference
for the actual values. The experiment needs improvement.

Data availability. The data in this experiment are mainly collected
by observation or generated by simulation. Data sets and figures
have been uploaded to the Supplement. The model information and
program of TRGIRS are obtained from https://pubs.usgs.gov/of/
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online at: https://doi.org/10.5194/nhess-18-2801-2018-supplement.

Author contributions. CX conceived the idea of this article and
completed the paper. GN proposed some important suggestions of
algorithm applications in the TRIGRS assimilation. Validation of
the algorithm, chart sorting and editing were completed by HL
and JW.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work is financially supported by the
National Key Basic Research Program of China (grant no.
2013CB733205).

Edited by: Thomas Glade
Reviewed by: two anonymous referees

References

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.:
A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking, IEEE Trans. Signal Process., 50, 174–188,
https://doi.org/10.1109/78.978374, 2002.

Baines, P. G.: Lorenz, EN 1963: Deterministic nonperiodic flow.
Journal of the Atmospheric Sciences 20, 130–41, Prog. Phys. Ge-
ogr., 32, 475–480, https://doi.org/10.1177/0309133308091948,
2008.

Baum, R. L., Savage, W. Z., and Godt, J. W.: TRIGRS – A For-
tran Program for Transient Rainfall Infiltration and Grid-Based
Regional Slope-Stability Analysis, version 2.0, U.S. Geological
Survey Open-File Report, 2008–1159, 75, 2008.

Iverson, R. M.: Landslide triggering by rain in-
filtration, Water Resour. Res., 36, 1897–1910,
https://doi.org/10.1029/2000wr900090, 2000.

Jiang, Y. A., Liao, M. S., Zhou, Z. W., Shi, X. G., Zhang,
L., and Balz, T.: Landslide Deformation Analysis by Cou-
pling Deformation Time Series from SAR Data with Hydrolog-
ical Factors through Data Assimilation, Remote Sens., 8, 179,
https://doi.org/10.3390/rs8030179, 2016.

Jing, L. R., Ma, Y., and Fang, Z. L.: Modeling of fluid flow and solid
deformation for fractured rocks with discontinuous deformation
analysis (DDA) method, Int. J. Rock Mech. Min. Sci., 38, 343–
355, https://doi.org/10.1016/S1365-1609(01)00005-3, 2001.

Li, X. P., He, S. M., Luo, Y., and Wu, Y.: Simulation of the slid-
ing process of Donghekou landslide triggered by the Wenchuan

Nat. Hazards Earth Syst. Sci., 18, 2801–2807, 2018 www.nat-hazards-earth-syst-sci.net/18/2801/2018/

https://pubs.usgs.gov/of/2008/1159/
https://pubs.usgs.gov/of/2008/1159/
https://doi.org/10.5194/nhess-18-2801-2018-supplement
https://doi.org/10.1109/78.978374
https://doi.org/10.1177/0309133308091948
https://doi.org/10.1029/2000wr900090
https://doi.org/10.3390/rs8030179
https://doi.org/10.1016/S1365-1609(01)00005-3


C. Xue et al.: Data assimilation with an improved particle filter 2807

earthquake using a distinct element method, Environ. Earth
Sci., 65, 1049–1054, https://doi.org/10.1007/s12665-011-0953-
8, 2012.

Lorig, L. J. and Hobbs, B. E.: Numerical Modeling of Slip Instabil-
ity Using the Distinct Element Method with State Variable Fric-
tion Laws, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 27,
525–534, https://doi.org/10.1016/0148-9062(90)91003-P, 1990.

Ma, G. C., Kaneko, F., Hori, S., and Nemoto, M.: Use of
Discontinuous Deformation Analysis to Evaluate the Dy-
namic Behavior of Submarine Tsunami-Generating Landslides
in the Marmara Sea, Int. J. Comput. Methods, 8, 151–170,
https://doi.org/10.1142/S0219876211002526, 2011.

Marcato, G., Fujisawa, K., Mantovani, M., Pasuto, A., Silvano, S.,
Tagliavini, F., and Zabuski, L.: Evaluation of seismic effects on
the landslide deposits of Monte Salta (Eastern Italian Alps) using
distinct element method, Nat. Hazards Earth Syst. Sci., 7, 695–
701, https://doi.org/10.5194/nhess-7-695-2007, 2007.

Mattern, J. P., Dowd, M., and Fennel, K.: Particle filter-based data
assimilation for a three-dimensional biological ocean model and
satellite observations, J. Geophys. Res.-Oceans, 118, 2746–2760,
https://doi.org/10.1002/jgrc.20213, 2013.

Moradkhani, H., Hsu, K. L., Gupt, H. A., and Sorooshian, S.: Un-
certainty assessment of hydrologic model states and parameters:
Sequential data assimilation using the particle filter, Water Re-
sour. Res., 41, 17, https://doi.org/10.1029/2004wr003604, 2005.

Salamon, P. and Feyen, L.: Assessing parameter, precipitation, and
predictive uncertainty in a distributed hydrological model using
sequential data assimilation with the particle filter, J. Hydrol.,
376, 428–442, https://doi.org/10.1016/j.jhydrol.2009.07.051,
2009.

Shi, G. H.: Discontinuous Deformation Analysis: A New
Numerical Model for the Statics and Dynamics of De-
formable Block Structures, Eng. Comput., 9, 157–168,
https://doi.org/10.1108/eb023855, 1992.

Thirel, G., Salamon, P., Burek, P., and Kalas, M.: Assimilation of
MODIS Snow Cover Area Data in a Distributed Hydrological
Model Using the Particle Filter, Remote Sens., 5, 5825–5850,
https://doi.org/10.3390/rs5115825, 2013.

US Geological Survey: TRIGRS – A Fortran Program for Transient
Rainfall Infiltration and Grid-Based Regional Slope-Stability
Analysis, Version 2.0, available at: https://pubs.usgs.gov/of/
2008/1159/, last access: 6 December 2017.

van Leeuwen, P. J.: Nonlinear data assimilation in geosciences: an
extremely efficient particle filter, Q. J. Roy. Meteorol. Soc., 136,
1991–1999, https://doi.org/10.1002/qj.699, 2010.

Zhang, H. J., Qin, S. X., Ma, J. W., and You, H. J.: Using Residual
Resampling and Sensitivity Analysis to Improve Particle Filter
Data Assimilation Accuracy, IEEE Geosci. Remote Sens. Lett.,
10, 1404–1408, https://doi.org/10.1109/Lgrs.2013.2258888,
2013.

www.nat-hazards-earth-syst-sci.net/18/2801/2018/ Nat. Hazards Earth Syst. Sci., 18, 2801–2807, 2018

https://doi.org/10.1007/s12665-011-0953-8
https://doi.org/10.1007/s12665-011-0953-8
https://doi.org/10.1016/0148-9062(90)91003-P
https://doi.org/10.1142/S0219876211002526
https://doi.org/10.5194/nhess-7-695-2007
https://doi.org/10.1002/jgrc.20213
https://doi.org/10.1029/2004wr003604
https://doi.org/10.1016/j.jhydrol.2009.07.051
https://doi.org/10.1108/eb023855
https://doi.org/10.3390/rs5115825
https://pubs.usgs.gov/of/2008/1159/
https://pubs.usgs.gov/of/2008/1159/
https://doi.org/10.1002/qj.699
https://doi.org/10.1109/Lgrs.2013.2258888

	Abstract
	Introduction
	Improvements to residual resampling particle filtering
	Application to the Lorenz-63 model
	Application to landslide simulation based on the TRIGRS model
	Conclusion and discussion
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	References

