3,395 research outputs found
Magnetic-Field Induced Quantum Critical Point in YbRhSi
We report low-temperature calorimetric, magnetic and resistivity measurements
on the antiferromagnetic (AF) heavy-fermion metal YbRhSi ( 70
mK) as a function of magnetic field . While for fields exceeding the
critical value at which the low temperature resistivity
shows an dependence, a divergence of upon
reducing to suggests singular scattering at the whole Fermi
surface and a divergence of the heavy quasiparticle mass. The observations are
interpreted in terms of a new type of quantum critical point separating a
weakly AF ordered from a weakly polarized heavy Landau-Fermi liquid state.Comment: accepted for publication in Phys. Rev. Let
Green's function for a Schroedinger operator and some related summation formulas
Summation formulas are obtained for products of associated Lagurre
polynomials by means of the Green's function K for the Hamiltonian H =
-{d^2\over dx^2} + x^2 + Ax^{-2}, A > 0. K is constructed by an application of
a Mercer type theorem that arises in connection with integral equations. The
new approach introduced in this paper may be useful for the construction of
wider classes of generating function.Comment: 14 page
Avoided Antiferromagnetic Order and Quantum Critical Point in CeCoIn
We measured specific heat and resistivity of heavy fermion CeCoIn5 between
the superconducting critical field and 9 T, with field in the
[001] direction, and at temperatures down to 50mK. At 5T the data show Non
Fermi Liquid behavior down to the lowest temperatures. At field above 8T the
data exhibit crossover from the Fermi liquid to a Non Fermi Liquid behavior. We
analyzed the scaling properties of the specific heat, and compared both
resistivity and the specific heat with the predictions of a spin-fluctuation
theory. Our analysis leads us to suggest that the NFL behavior is due to
incipient antiferromagnetism (AF) in CeCoIn5, with the quantum critical point
in the vicinity of the . Below the AF phase which competes
with the paramagnetic ground state is superseded by the superconducting
transition.Comment: 5 pages, 3 figure
Examine the species and beam-energy dependence of particle spectra using Tsallis Statistics
Tsallis Statistics was used to investigate the non-Boltzmann distribution of
particle spectra and their dependence on particle species and beam energy in
the relativistic heavy-ion collisions at SPS and RHIC. Produced particles are
assumed to acquire radial flow and be of non-extensive statistics at
freeze-out. J/psi and the particles containing strangeness were examined
separately to study their radial flow and freeze-out. We found that the strange
hadrons approach equilibrium quickly from peripheral to central A+A collisions
and they tend to decouple earlier from the system than the light hadrons but
with the same final radial flow. These results provide an alternative picture
of freeze-outs: a thermalized system is produced at partonic phase; the
hadronic scattering at later stage is not enough to maintain the system in
equilibrium and does not increase the radial flow of the copiously produced
light hadrons. The J/psi in Pb+Pb collisions at SPS is consistent with early
decoupling and obtains little radial flow. The J/psi spectra at RHIC are also
inconsistent with the bulk flow profile.Comment: 12 pages, 4 figures, added several references and some clarifications
et
Order and nFl Behavior in UCu4Pd
We have studied the role of disorder in the non-Fermi liquid system UCu4Pd
using annealing as a control parameter. Measurement of the lattice parameter
indicates that this procedure increases the crystallographic order by
rearranging the Pd atoms from the 16e to the 4c sites. We find that the low
temperature properties depend strongly on annealing. Whereas the non-Fermi
liquid behavior in the specific heat can be observed over a larger temperature
range after annealing, the clear non-Fermi liquid behavior of the resistivity
of the unannealed sample below 10 K disappears. We come to the conclusion that
this argues against the Kondo disorder model as an explanation for the
non-Fermi liquid properties of both as-prepared and annealed UCu4Pd
Disorder, inhomogeneity and spin dynamics in f-electron non-Fermi liquid systems
Muon spin rotation and relaxation (SR) experiments have yielded evidence
that structural disorder is an important factor in many f-electron-based
non-Fermi-liquid (NFL) systems. Disorder-driven mechanisms for NFL behaviour
are suggested by the observed broad and strongly temperature-dependent SR
(and NMR) linewidths in several NFL compounds and alloys. Local disorder-driven
theories (Kondo disorder, Griffiths-McCoy singularity) are, however, not
capable of describing the time-field scaling seen in muon spin relaxation
experiments, which suggest cooperative and critical spin fluctuations rather
than a distribution of local fluctuation rates. A strong empirical correlation
is established between electronic disorder and slow spin fluctuations in NFL
materialsComment: 24 pages, 15 figures, submitted to J. Phys.: Condens. Matte
Presynaptic actions of 4-Aminopyridine and γ-aminobutyric acid on rat sympathetic ganglia in vitro
Responses to bath-applications of 4-aminopyridine (4-AP) and -aminobutyric acid (GABA) were recorded intracellularly from neurones in the rat isolated superior cervical ganglion.
4-aminopyridine (0.1–1.0 mmol/l) usually induced spontaneous action potentials and excitatory postsynaptic potentials (EPSPs), which were blocked by hexamethonium. Membrane potential was unchanged; spike duration was slightly increased. Vagus nerve B-and C-fibre potentials were prolonged.
In 4-AP solution (0.1–0.3 mmol/l), GABA (0.1 mmol/l), 3-aminopropanesulphonic acid or muscimol evoked bursts of spikes and EPSPs in addition to a neuronal depolarization. These bursts, which were not elicited by glycine, glutamate, taurine or (±)-baclofen, were completely antagonised by hexamethonium, tetrodotoxin or bicuculline methochloride.
It is concluded that: (a) 4-AP has a potent presynaptic action on sympathetic ganglia; (b) presynaptic actions of GABA can be recorded postsynaptically in the presence of 4-AP; and (c) the presynaptic GABA-receptors revealed in this condition are similar to those on the postsynaptic membrane
First Measurement of the rho Spectral Function in High-Energy Nuclear Collisions
We report on a precision measurement of low-mass muon pairs in 158 AGeV
indium-indium collisions at the CERN SPS. A significant excess of pairs is
observed above the yield expected from neutral meson decays. The unprecedented
sample size of 360 000 dimuons and the good mass resolution of about 2% allow
us to isolate the excess by subtraction of the decay sources. The shape of the
resulting mass spectrum is consistent with a dominant contribution from
pi+pi-->rho-->mu+mu- annihilation. The associated space-time averaged rho
spectral function shows a strong broadening, but essentially no shift in mass.
This may rule out theoretical models linking hadron masse
- …
