1,859 research outputs found
Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide
Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO),
is the first member of a new class of organometallic hybrids which adopts the
structural pattern and physical properties of classical perovskites in two
dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be
tailored by intercalation of organic donor molecules, such as
tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF),
and by the inorganic acceptor SbF. Integration of donor molecules leads to
a more insulating behavior of poly-MTO, whereas SbF insertion does not
cause any significant change in the resistivity. The resistivity data of pure
poly-MTO is remarkably well described by a two-dimensional electron system.
Below 38 K an unusual resistivity behavior, similar to that found in doped
cuprates, is observed: The resistivity initially increases approximately as
ln) before it changes into a dependence below 2 K.
As an explanation we suggest a crossover from purely two-dimensional
charge-carrier diffusion within the \{ReO\} planes at high
temperatures to three-dimensional diffusion at low temperatures in a
disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov
correction). Furthermore, a linear positive magnetoresistance was found in the
insulating regime, which is caused by spatial localization of itinerant
electrons at some of the Re atoms, which formally adopt a electronic
configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent
magnetization and specific heat measurements in various magnetic fields suggest
that the electronic structure of poly-MTO can safely be approximated by a
purely 2D conductor.Comment: 15 pages, 16 figures, 2 table
Current cosmological constraints from a 10 parameter CMB analysis
We compute the constraints on a ``standard'' 10 parameter cold dark matter
(CDM) model from the most recent CMB and data and other observations, exploring
30 million discrete models and two continuous parameters. Our parameters are
the densities of CDM, baryons, neutrinos, vacuum energy and curvature, the
reionization optical depth, and the normalization and tilt for both scalar and
tensor fluctuations.
Our strongest constraints are on spatial curvature, -0.24 < Omega_k < 0.38,
and CDM density, h^2 Omega_cdm <0.3, both at 95%. Including SN 1a constraints
gives a positive cosmological constant at high significance.
We explore the robustness of our results to various assumptions. We find that
three different data subsets give qualitatively consistent constraints. Some of
the technical issues that have the largest impact are the inclusion of
calibration errors, closed models, gravity waves, reionization, nucleosynthesis
constraints and 10-dimensional likelihood interpolation.Comment: Replaced to match published ApJ version. More details added. 13 ApJ
pages. CMB movies and color figs at
http://www.hep.upenn.edu/~max/10par_frames.html or from [email protected]
CLASS B0827+525: `Dark lens' or binary radio-loud quasar?
We present radio, optical, near-infrared and spectroscopic observations of
the source B0827+525. We consider this source as the best candidate from the
Cosmic Lens All-Sky Survey (CLASS) for a `dark lens' system or binary
radio-loud quasar. The system consists of two radio components with somewhat
different spectral indices, separated by 2.815 arcsec. VLBA observations show
that each component has substructure on a scale of a few mas. A deep K-band
exposure with the W.M.Keck-II Telescope reveals emission near both radio
components. The K-band emission of the weaker radio component appears extended,
whereas the emission from the brighter radio component is consistent with a
point source. Hubble Space Telescope F160W-band observations with the NICMOS
instrument confirms this. A redshift of 2.064 is found for the brighter
component, using the LRIS instrument on the W.M.Keck-II Telescope. The
probability that B0827+525 consists of two unrelated compact flat-spectrum
radio sources is ~3%, although the presence of similar substructure in both
component might reduce this.
We discuss two scenarios to explain this system: (i) CLASS B0827+525 is a
`dark lens' system or (ii) B0827+525 is a binary radio-loud quasar. B0827+525
has met all criteria that thus far have in 100% of the cases confirmed a source
as an indisputable gravitational lens system. Despite this, no lens galaxy has
been detected with m_F160W<=23 mag. Hence, we might have found the first binary
radio-loud quasar. At this moment, however, we feel that the `dark lens'
hypothesis cannot yet be fully excluded.Comment: 9 pages, 6 figures; Accepted for publication in Astronomy &
Astrophysics; Full-res. images 1 and 3 can be obtained from L.V.E.
(Micro)evolutionary changes and the evolutionary potential of bird migration
Seasonal migration is the yearly long-distance movement of individuals between their breeding and wintering grounds. Individuals from nearly every animal group exhibit this behavior, but probably the most iconic migration is carried out by birds, from the classic V-shape formation of geese on migration to the amazing nonstop long-distance flights undertaken by Arctic Terns Sterna paradisaea. In this chapter, we discuss how seasonal migration has shaped the field of evolution. First, this behavior is known to turn on and off quite rapidly, but controversy remains concerning where this behavior first evolved geographically and whether the ancestral state was sedentary or migratory (Fig. 7.1d, e). We review recent work using new analytical techniques to provide insight into this topic. Second, it is widely accepted that there is a large genetic basis to this trait, especially in groups like songbirds that migrate alone and at night precluding any opportunity for learning. Key hypotheses on this topic include shared genetic variation used by different populations to migrate and only few genes being involved in its control. We summarize recent work using new techniques for both phenotype and genotype characterization to evaluate and challenge these hypotheses. Finally, one topic that has received less attention is the role these differences in migratory phenotype could play in the process of speciation. Specifically, many populations breed next to one another but take drastically different routes on migration (Fig. 7.2). This difference could play an important role in reducing gene flow between populations, but our inability to track most birds on migration has so far precluded evaluations of this hypothesis. The advent of new tracking techniques means we can track many more birds with increasing accuracy on migration, and this work has provided important insight into migration's role in speciation that we will review here
Conservação da umidade do solo em pomar de pessegueiro utilizando cobertura morta de aveia preta.
bitstream/CPACT/11047/1/COMUNICADO_136.pd
Measuring Cosmological Parameters with the JVAS and CLASS Gravitational Lens Surveys
The JVAS (Jodrell Bank-VLA Astrometric Survey) and CLASS (Cosmic Lens All-Sky
Survey) are well-defined surveys containing about ten thousand flat-spectrum
radio sources. For many reasons, flat-spectrum radio sources are particularly
well-suited as a population from which one can obtain unbiased samples of
gravitational lenses. These are by far the largest gravitational (macro)lens
surveys, and particular attention was paid to constructing a cleanly-defined
sample for the survey itself and for the underlying luminosity function. Here
we present the constraints on cosmological parameters, particularly the
cosmological constant, derived from JVAS and combine them with constraints from
optical gravitational lens surveys, `direct' measurements of ,
and the age of the universe, and constraints derived from CMB
anisotropies, before putting this final result into the context of the latest
results from other, independent cosmological tests.Comment: LaTeX, 9 pages, 6 PostScript figures, uses texas.sty. To appear in
the Proceedings of the 19th Texas Symposium on Relativistic Astrophysics and
Cosmology (CD-ROM). Paper version available on request. Actual poster (A0 and
A4 versions) available from
http://multivac.jb.man.ac.uk:8000/helbig/research/publications/info/
texas98.htm
The Fundamental Plane of Gravitational Lens Galaxies and The Evolution of Early-Type Galaxies in Low Density Environments
Most gravitational lenses are early-type galaxies in relatively low density
environments -- a ``field'' rather than a ``cluster'' population. We show that
field early-type galaxies with 0 < z < 1, as represented by the lens galaxies,
lie on the same fundamental plane as those in rich clusters at similar
redshifts. We then use the fundamental plane to measure the combined
evolutionary and K-corrections for early-type galaxies in the V, I and H bands.
Only for passively evolving stellar populations formed at z > 2 (H_0=65 km/s
Mpc, Omega_0=0.3, Lambda_0=0.7) can the lens galaxies be matched to the local
fundamental plane. The high formation epoch and the lack of significant
differences between the field and cluster populations contradict many current
models of the formation history of early-type galaxies. Lens galaxy colors and
the fundamental plane provide good photometric redshift estimates with an
empirical accuracy of -0.03 +/- 0.11 for the 17 lenses with known redshifts. A
mass model dominated by dark matter is more consistent with the data than
either an isotropic or radially anisotropic constant M/L mass model, and a
radially anisotropic model is better than an isotropic model.Comment: 36 pages, 9 figures, 6 tables. ApJ in press. Final version contains
more observational dat
Properties of cosmologies with dynamical pseudo Nambu-Goldstone bosons
We study observational constraints on cosmological models with a quintessence
field in the form of a dynamical pseudo Nambu-Goldstone boson. After reviewing
the properties of the solutions, from a dynamical systems phase space analysis,
we consider the constraints on parameter values imposed by luminosity distances
from the 60 Type Ia supernovae published by Perlmutter et al., and also from
gravitational lensing statistics of distant quasars. In the case of the Type Ia
supernovae we explicitly allow for the possibility of evolution of the peak
luminosities of the supernovae sources, using simple empirical models which
have been recently discussed in the literature. We find weak evidence to
suggest that the models with supernovae evolution fit the data better in the
context of the quintessence models in question. If source evolution is a
reality then the greatest challenge facing these models is the tension between
current value of the expansion age, H_0 t_0, and the fraction of the critical
energy density, Omega_{phi0}, corresponding to the scalar field. Nonetheless
there are ranges of the free parameters which fit all available cosmological
data.Comment: 22 pages, RevTeX, 13 figures, epsf. v3: References added, plus a few
sentences to clarify some small points; v4: Typos fixe
- …
