539 research outputs found

    Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity

    Full text link
    We introduce the NN-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-QQ cavity. We finally discuss the implementation of the proposed schemes.Comment: 4 pages, 3 figures. Title changed (published version

    Microwave Photon Detector in Circuit QED

    Get PDF
    Quantum optical photodetection has occupied a central role in understanding radiation-matter interactions. It has also contributed to the development of atomic physics and quantum optics, including applications to metrology, spectroscopy, and quantum information processing. The quantum microwave regime, originally explored using cavities and atoms, is seeing a novel boost with the generation of nonclassical propagating fields in circuit quantum electrodynamics (QED). This promising field, involving potential developments in quantum information with microwave photons, suffers from the absence of photodetectors. Here, we design a metamaterial composed of discrete superconducting elements that implements a high-efficiency microwave photon detector. Our design consists of a microwave guide coupled to an array of metastable quantum circuits, whose internal states are irreversibly changed due to the absorption of photons. This proposal can be widely applied to different physical systems and can be generalized to implement a microwave photon counter.Comment: accepted in Phys. Rev. Let

    Non-Local Quantum Gates: a Cavity-Quantum-Electro-Dynamics implementation

    Full text link
    The problems related to the management of large quantum registers could be handled in the context of distributed quantum computation: unitary non-local transformations among spatially separated local processors are realized performing local unitary transformations and exchanging classical communication. In this paper, we propose a scheme for the implementation of universal non-local quantum gates such as a controlled-\gate{NOT} (\cnot) and a controlled-quantum phase gate (\gate{CQPG}). The system we have chosen for their physical implementation is a Cavity-Quantum-Electro-Dynamics (CQED) system formed by two spatially separated microwave cavities and two trapped Rydberg atoms. We describe the procedures to follow for the realization of each step necessary to perform a specific non-local operation.Comment: 12 pages, 5 figures, RevTeX; extensively revised versio

    Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    Get PDF
    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation and detection of genuine multipartite entanglement between mesoscopic atomic ensembles. Our results extend in a non trivial way the EPR entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature {\bf 413}, 400 (2001)]. We find that under realistic conditions, a second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.Comment: 8 pages, 6 figure

    Time evolution of a superposition of dressed oscillator states in a cavity

    Full text link
    Using the formalism of {\it renormalized} coordinates and \textit{dressed} states introduced in previous publications, we perform a nonperturbative study of the time evolution of a superposition of two states, the ground state and the first excited level of a harmonic oscillator, the system being confined in a perfectly reflecting cavity of radius RR. For R→∞R\to\infty, we find dissipation with dominance of the interference terms of the density matrix, in both weak- and strong-coupling regimes. For small values of RR all elements of the density matrix present an oscillatory behavior as times goes on and the system is not dissipative. In both cases, we obtain improved theoretical results with respect to those coming from perturbation theory.Comment: 15 pages, LATEX, 3 figures; version to appear in J. Phys. A - Math. Theo

    Spontaneously generated atomic entanglement in free space: reinforced by incoherent pumping

    Get PDF
    We study spontaneously generated entanglement (SGE) between two identical multilevel atoms in free space via vacuum-induced radiative coupling. We show that the SGE in two-atom systems may initially increase with time but eventually vanishes in the time scale determined by the excited state lifetime and radiative coupling strength between the two atoms. We demonstrate that a steady-state SGE can be established by incoherently pumping the excited states of the two-atom system. We have shown that an appropriate rate of incoherent pump can help producing optimal SGE. The multilevel systems offer us more chanel to establish entanglement. The system under consideration could be realized in a tight trap or atoms/ions doped in a solid substrate.Comment: have some difference with published version (please see PRA

    Environment assisted entanglement enhancement

    Full text link
    We consider dissipative atom-cavity systems and show that their collective dynamics leads to the maximization of entanglement for intermediate values of the cavity leakage parameter κ\kappa. We discuss possible ways the reservoir influences entanglement. We first consider the entanglement of a single two-level atom with a microwave cavity that is coupled to another cavity. We show that the atom-cavity entanglement can be made to increase with cavity leakage. We next show that the entanglement between two atoms passing successively through a cavity can be maximised for intermediate values of κ\kappa. We finally consider the micromaser where the increase of two-atom entanglement for stronger cavity-environment coupling is demonstrated for experimentally attainable values of the micromaser parameters.Comment: 4 pages, Revtex, 1 eps figure; minor changes to match with published versio

    Quantum Zeno dynamics of a field in a cavity

    Full text link
    We analyze the quantum Zeno dynamics that takes place when a field stored in a cavity undergoes frequent interactions with atoms. We show that repeated measurements or unitary operations performed on the atoms probing the field state confine the evolution to tailored subspaces of the total Hilbert space. This confinement leads to non-trivial field evolutions and to the generation of interesting non-classical states, including mesoscopic field state superpositions. We elucidate the main features of the quantum Zeno mechanism in the context of a state-of-the-art cavity quantum electrodynamics experiment. A plethora of effects is investigated, from state manipulations by phase space tweezers to nearly arbitrary state synthesis. We analyze in details the practical implementation of this dynamics and assess its robustness by numerical simulations including realistic experimental imperfections. We comment on the various perspectives opened by this proposal

    Decoherence assisting a measurement-driven quantum evolution process

    Full text link
    We study the problem of driving an unknown initial mixed quantum state onto a known pure state without using unitary transformations. This can be achieved, in an efficient manner, with the help of sequential measurements on at least two unbiased bases. However here we found that, when the system is affected by a decoherence mechanism, only one observable is required in order to achieve the same goal. In this way the decoherence can assist the process. We show that, depending on the sort of decoherence, the process can converge faster or slower than the method implemented by means of two complementary observables.Comment: Four pages, three figures included ([email protected]

    Realization of a superconducting atom chip

    Full text link
    We have trapped rubidium atoms in the magnetic field produced by a superconducting atom chip operated at liquid Helium temperatures. Up to 8.2⋅1058.2\cdot 10^5 atoms are held in a Ioffe-Pritchard trap at a distance of 440 μ\mum from the chip surface, with a temperature of 40 μ\muK. The trap lifetime reaches 115 s at low atomic densities. These results open the way to the exploration of atom--surface interactions and coherent atomic transport in a superconducting environment, whose properties are radically different from normal metals at room temperature.Comment: Submitted to Phys. Rev. Let
    • …
    corecore