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In this work we design a metamaterial composed of discrete superconducting elements that im-
plements a high-efficiency microwave photon detector. Our design consists of a microwave guide
coupled to an array of metastable quantum circuits, whose internal states are irreversibly changed
due to the absorption of photons. This proposal can be widely applied to different physical systems
and can be generalized to implement a microwave photon counter.
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Quantum optical photodetection [1] has occupied a
central role in understanding radiation-matter interac-
tions. It has also contributed to the development of
atomic physics and quantum optics, with applications to
metrology, spectroscopy, and quantum information pro-
cessing [2]. The quantum microwave regime, originally
explored using cavities and atoms [3, 4], is seeing a novel
boost with the generation of nonclassical propagating
fields [5] in circuit quantum electrodynamics (QED) [6–
8]. In the last years we have witnessed a tremen-
dous development of the field of quantum circuits [9–11].
These devices are built, among other things, from super-
conducting elements, Josephson junctions, Cooper-pair
boxes [12], SQUID’s, microwave guides and cavities [6–
8], all of them cooled down to the quantum degenerate
regime. Among numerous applications we may high-
light the creation of artificial atoms or circuits with dis-
crete quantum energy levels, and quantized charge [12],
flux [13] or phase [14] degrees of freedom. These circuits
find applications not only as quantum bits for quantum
information processing as charge [15–17], flux [18, 19] or
phase qubits [20–22], but also in the linear and nolinear
manipulation of quantum microwave fields. In particular
we remark the exchange of single photons between su-
perconducting qubits and resonators [7, 23–25], the first
theoretical efforts for detecting incoming photons [26],
the generation of propagating single photons [5] and the
nonlinear effects that arise from the presence of a qubit
in a resonator [27, 28].

While the previous developments represent a success-
ful marriage between quantum optics and mesoscopic
physics, this promising field suffers from the absence of
photodetectors. The existence of such devices in the op-
tical regime allows a sophisticated analysis and manip-
ulation of the radiation field which is crucial for quan-
tum information processing and communication. This
includes Bell inequality experiments, all optical and
measurement-based quantum computing, quantum ho-
modyne tomography, and most important quantum com-
munication and cryptography [2].

There are several challenges to design a microwave pho-
todetector in circuit QED: i) Available cryogenic linear
amplifiers are unable to resolve the few photon regime.
ii) Free-space cross-section between microwave fields and
matter qubits are known to be small. iii) The use of cav-
ities to enhance the coupling introduces additional prob-
lems, such as the frequency mode matching and the com-
promise between high-Q and high reflectivity. iv) The im-
possibility of performing continuous measurement with-
out backaction [26], which leads to the problem of syn-
chronizing the detection process with the arrival of the
measured field. We observe that there are related theo-
retical and experimental proposals that may solve some
but not all of these problems. Most of them are oriented
towards unitary or coherent evolution of the photon-
qubit system, aided by nonlinear dispersive [24, 27] or
bifurcation effects [29]. But so far, to our knowledge,
there has been no implementation of a microwave pho-
ton counter or even a simple microwave photon detector.

Our goal in this work is to design a metamaterial that
performs single-shot microwave photodetection via irre-
versible absorption of photons [30]. It resembles a photo-
graphic film: when a photon enters the device, there is a
large chance that it will be captured, leaving the system
in a stable and mesoscopically distinguishable state that
can be observed a posteriori. More precisely, we pro-
pose a general setup based on a one-dimensional waveg-
uide that passes by a set of photon absorbers [Fig. 1].
We neither rely on any kind of cavity device nor aim at
reaching a matter-field strong-coupling regime. The ab-
sorbers along the waveguide may be built with bistable
quantum circuits similar to the ones used for implement-
ing qubits. These circuits should be able to capture a
photon and decay from an initial state |0〉 into a sta-
ble state |g〉 . In analogy to the photographic film, these
irreversible events constitute the measurement process
itself. The final step consists on counting the number
of activated absorbers which is related to the number
of photons in the Fock state which was detected by the
quantum measurement. The counting should be done af-
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FIG. 1: (color online) Detector design. Sketch showing a
one-dimensional waveguide (gray) coupled to a set of three-
level absorbers (blue squares) in arbitrary positions. The mi-
crowave field (dashed line) excites coherently the state |0〉
to the upper state |1〉, which decays onto a long-lived sta-
ble state. An analogous setup uses current-biased Josephson
Junctions (CBJJ), in which a washboard potential confines
two metastable states that can decay into a continuum of
current states.

ter the absorption process has finished, thereby avoiding
any disturbing backaction on the incoming signal. Re-
mark that the detection process is in this sense passive
and does not require any kind of control.

It is possible to develop a simple model for the detec-
tion based on the previous rather general requirements.
We model the absorbing elements as three-level systems,
with an internal frequency ω and a decay rate Γ from the
excited state |1〉 to the final stable state |g〉 (see Fig. 1).
Mathematically, this is described with a master equation
for the density matrix ρ of the absorbers and the waveg-
uide

d

dt
ρ = − i

h̄
[H, ρ] + Lρ. (1)

The Hamiltonian contains terms for the absorbers and
the radiation fields, ψl and ψr, propagating left and right
with group velocity vg, see Methods. The interaction be-
tween both is modeled using a delta-potential of strength
V

H =
∑

i

h̄ω |1〉i 〈1|+ ih̄vg

∫
dx

[
ψ†l ∂xψl − ψ†r∂xψr

]
+

∑
i

∫
dxV δ(x− xi) [(ψl + ψr) |1〉i 〈0|+ H.c.] ,(2)

where xi and |0〉 , |1〉 denote the position and the states
of the i-th absorber. The Liouvillian L =

∑
i Li has the

standard decay terms for each of the absorbing qubits

Liρ =
Γ
2

(2 |g〉i 〈1| ρ |1〉i 〈g| − |1〉i 〈1|i ρ− ρ |1〉i 〈1|) , (3)

and it is proportional to the decay rate Γ. The solutions
of this master equation can be found using an equivalent

non-Hermitian Hamiltonian H̄ = H − i
∑

j Γ/2 |1〉j 〈1| ,
that rules the dynamics of the populations in |0〉 and
|1〉 . The norm of the wavefunction is not preserved by
this equation, but precisely the decrease of the norm is
the probability that one or more elements have absorbed
a photon.

The simplest scenario that we can consider is a sin-
gle absorber coupled to the microwave guide, a problem
that has analytical solutions for any pulse shape. In the
limit of long wavepackets it becomes more convenient to
analyze the scattering states of H̄. For a single absorb-
ing element, these states are characterized by the inten-
sity of the incoming beam, which we take as unity, and
the intensity of the reflected and trasmitted beams, |r|2
and |t|2. The associated complex amplitudes are related
by the scattering matrix T, as in (t, 0)t = T (1, r)t. The
single-absorber transfer matrix

T =
(

1− 1/γ −1/γ
1/γ 1 + 1/γ

)
(4)

is a function of a single complex dimensionless parameter

γ = (Γ− iδ)vg/V
2, (5)

which relates the properties of the circuit: the group ve-
locity in the waveguide, vg, the strength of the coupling
between the absorbers and the waveguide, V, and the
detuning of the photons from a characteristic frequency
of the absorbers, δ = ω − ωµ. The single-photon detec-
tion efficiency (absorption probability) is computed as
the amount of radiation which is neither transmitted nor
reflected. In terms of the elements of T, it is given by
α = 1− (1 + |T01|2)|T11|−2 = 2γ(1 + γ)−2.

The curve shown in Fig. 2 reveals two regimes. If
γ � 1, the decay channel |1〉 → |g〉 is very slow com-
pared to the time required for a photon to excite the
|0〉 → |1〉 transition, and only a small fraction of the pho-
tons is absorbed. If, on the other hand, the metastable
state |1〉 decays too fast, γ � 1, there is a Zeno sup-
pression of the absorption. From previous formula, the
maximal achievable detection efficiency is 50%, a limit
reached by tuning the single absorber on resonance with
the microwave field. We conjecture that this may be a
fundamental limit for any setup involving a single point-
like absorber and no time-dependent external control.

A natural expectation would be that clustering many
absorbers inside the waveguide increases the detection
efficiency. As shown in Fig. 2, this is not true. If we have
a cluster of N identical absorbers close together, we can
compute the detection efficiency using the same formula
but with the scattering matrix Tcluster = TN . As far as
the cluster size is smaller than a wavelength, the setup
will be limited to a 50% maximum efficiency. There is a
simple explanation for this. Since the cluster size is small,
the photon sees the group of absorbers as a single element
with a larger decay rate, NΓ. This renormalization just
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FIG. 2: (Color online) Detection efficiency when absorbers
are on resonance (real γ). (Top) Absorption probability vs.
effective decay rate γ = Γvg/V 2 in dimensionless units for
a setup with N = 1, 2, 4 and 8 qubits (black, green, blue,
red) either in cluster (dashed) or array (solid) regime. The
error bars account for random deviations in the individual ab-
sorber properties, γi, of up to 40%. When absorbers are close
together, the efficiency is limited to 50%, while in the other
case there is no upper limit. (Bottom) Detection efficiency vs.
separation d in a periodically distributed array of absorbers.

shifts the location of the optimal working point, leaving
the maximum efficiency untouched.

The main result is that we can indeed increase the ab-
sorption efficiency by separating the absorbing elements
a fixed distance d longitudinally along the waveguide.
The total scattering matrix for the array is given by
Tarray =

∏N
j=1 exp(−i2πσzd/λ)Tj , where σz is a Pauli

matrix and the scattering of each absorber may be differ-
ent. In this case the microwave pulse does no longer see
the the detection array as a big particle, and we obtain
an collective enhacement of the absorption probability.
Remarkably, an arbitrarily high detection efficiency can
be reached by increasing the number of absorbers and
tuning their separation d. Already with two and three
qubits we can achieve 80% and 90% detection efficiency,
see Figs. 2 and 3. Furthermore, as we have seen nu-
merically, the more qubits we have, the less sensitive the
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FIG. 3: (a) Maximal achievable single-photon detection effi-
ciency as a function of the number of qubits along the mi-
crowave guide. (b) Optimal working parameters vs. number
of qubits.

whole setup becomes to the experimental parameters, see
Fig. 2. This shows that the proposed setup is both robust
and scalable.

The previous analysis is of a general kind. It only
requires a coupling between a waveguide and absorbers
that may capture a photon and irreversibly decay to one
or more stable states. A practical implementation of our
setup, which does not require strong coupling or cavi-
ties, consists on a coplanar coaxial waveguide coupled to
a number of current-biased Josephson junctions (CBJJ)
[14, 20]. We will now sketch the microscopic derivation
of Eq. (2) for this setup and relate the efficiency to the
parameters of the circuit.

First of all, since the CBJJs are described by a wash-
board potential for the phase degree of freedom, we can
identify |0〉 and |1〉 with the two lowest metastable levels
in a local minimum, see Fig. 1. The energy levels around
such a minimum are well described by a harmonic oscilla-
tor with a frequency ω that depends on the bias current.
Furthermore, these levels have finite lifetimes before they
decay into the continuum of current states, but since that
the decay rate of state |0〉, Γ0, can be made 1000 times
smaller [14] than that of |1〉, Γ1, we will approximate
Γ0 ' 0,Γ1 ≡ Γ.

The microwave guide is described by a Lagrangian [6]

L =
∫
dx

[
l

2
(∂tQ)2 − 1

2c
(∂xQ)2

]
, (6)

where l and c are the inductance and capacitances per
unit length. The quantization of the charge field Q intro-
duces Fock operators ap associated to the normal modes
of the line. If we assume periodic boundary conditions,
then wp(x, t) = exp[i(px − ωpt)]/L−1/2, where L is the
length of the waveguide and the dispersion relation is
ωp = vg|p| = |p|/

√
cl. When the relevant modes of the

electromagnetic field are concentrated in a small inter-
val B around a central momentum p0, we can introduce
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right and left moving fields ψr(x, t) =
∑

p∈B apwp(x, t),
and ψl(x, t) =

∑
p∈B a−pw−p(x, t), and approximate the

waveguide Hamiltonian as H =
∑

p ωpa
†
pap, which corre-

sponds to the first line in Eq. (2).
Finally, for the interaction between the absorbers and

the guide we use a capacitive coupling in the dipole ap-
proximation [6]. The corresponding Hamiltonian has the
form

Hint =
Cg

Cg + CJ

√
h̄ωµ

c
(ψr + ψl + H.c.)

e

α
(a+ a†), (7)

The first fraction depends on the capacitances of the
junction and of the gate between the junction and the mi-
crowave, CJ and Cg, respectively. The second term gives
the strength of the electric potential inside the waveg-
uide and it is proportional to the fields. Finally, the third
term is just the charge operator for the CBJJ expressed
using harmonic approximation around a minimum of
the washboard potential. In particular, a ' |0〉 〈1| and
α2 = EC/h̄ω is the dimensionless parameter of this os-
cillator, expressed in terms of the junction capacitance,
EC = (2e)2/CJ , and the plasma frequency. Note that
when we combine all constants to form the interaction
strength V there is not explicit dependence on the length
of the microwave guide. Qualitatively, while in cavity
experiment the qubit only sees a small fraction of the
standing waves with which it interacts, in our setup each
absorber gets to see the whole of the photon wavepacket
after a long enough time.

In terms of the microscopic model, it is possible to
write the parameter that determines the detector effi-
ciency as follows

γ =
α2

c12

h̄

eZ0

Γ1 − i(ω − ωµ)
ωµ

, (8)

where we have introduced the dimensionless constant
c12 = Cg/(Cg + CJ). It is evident from Eq. (9) that,
in order to optimize the efficiency, we have several exper-
imental knobs to play with. In particular we have consid-
ered the following values, close to current experiments[20]
a junction capacitance of CJ = 4.8pF, c12 = 0.13 and
ω = 5 GHz. Putting the numbers together, and letting
the waveguide impedance oscillate between 10 and 100 Ω,
the optimal operation point for a single junction gives a
necessary decay rate Γ ' 10 − 100 MHz. Increasing Cg

by a factor 2 triples the optimal decay rate, Γ ' 30−300
MHz.

Our proposal has the following potential limitations
and imperfections. First, the bandwidth of the detected
photons has to be small compared to the time required
to absorb a photon, roughly proportional to 1/Γ. Second,
the efficiency might be limited by errors in the discrim-
ination of the state |g〉 but these effects are currently
negligible [25]. Third, dark counts due to the decay of

the state |0〉 can be corrected by calibrating Γ0 and post-
processing the measurement statistics. Fourth, fluctua-
tions in the relative energies of states |0〉 and |1〉 , also
called dephasing, are mathematically equivalent to an
enlargement of the incoming signal bandwidth by a few
megahertz and should be taken into account in the choice
of parameters. Finally and most important, unknown
many-body effects cause the non-radiative decay process
1 → 0, which may manifest in the loss of photons while
they are being absorbed. In current experiments[25] this
happens with a rate of a few megahertzs, so that it would
only affect very long wavepackets.

Our design can be naturally extended to implement a
photon counter using a number of detectors large enough
to capture all incoming photons. Furthermore, our pro-
posal can be generalized to other level schemes and quan-
tum circuits that can absorb photons and irreversible de-
cay into long lived and easily detectable states.
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