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Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping
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3Department of Physics, Wright State University, Dayton, Ohio 45435, USA
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We study spontaneously generated entanglement �SGE� between two identical multilevel atoms in free space
via vacuum-induced radiative coupling. We show that the SGE in two-atom systems may initially increase with
time but eventually vanishes in the time scale determined by the excited-state lifetime and radiative coupling
strength between the two atoms. We demonstrate that steady-state SGE can be established by incoherently
pumping the atoms to their excited states. We have shown that an appropriate rate of incoherent pump can help
in producing optimal steady-state SGE. The multilevel systems offer us more channels to establish entangle-
ment. The system under consideration can be realized in a tight trap or atoms/ions doped in a solid substrate.

DOI: 10.1103/PhysRevA.79.062102 PACS number�s�: 03.65.Ud, 42.50.Dv

I. INTRODUCTION

The recent development of quantum technologies strives
to resolve the quest for the best entanglement source in quan-
tum optical systems. Although entanglement is observed in a
variety of systems, entanglement in atomic systems are fa-
vored as more scalable and practical systems compared to
their “photonic only” counterparts due to the development of
reliable state-of-the-art technologies to control atoms one at
a time �1� that can be precisely scaled to many atoms �2,3�.
Many exciting developments of entanglement sources are
based on atomic systems, e.g., entanglement via atom-cavity
coupling �4�, atom-atom entanglement via cavity �5�, en-
tanglement in trapped ions and atoms �3,6�, atomic entangle-
ment in an optical lattice by controlled collision �7�, and also
atomic entanglement via external fields �8,9�. Recently, it has
also been shown that well separated atomic ensembles can
also be entangled via coherent coupling between them �10�.
Scully �11� has extensively discussed entanglement in two,
three, and many atoms via a single photon, and has shown
that such an ensemble can produce directional spontaneous
emission �12�. Das et al. �13� have shown that spatial varia-
tion in phase of an applied laser significantly alters the en-
tanglement between two atoms.

Among the different atomic entanglement generation pro-
cesses, an interesting and useful category is spontaneously
generated entanglement �SGE� sources via interaction of at-
oms with a common bath of cavity field �5�, vacuum
�3,6,14�, heat bath �15�, or even a spin chain �16�. Usually,
the baths have very short correlation time, and hence poten-
tially cause disentanglement �17� and decoherence �18� in an
entangled system. New studies of SGE in two two-level at-
oms in non-Markovian limit have been reported recently
�19�. Effect of dipole-dipole �dd� coupling on coherences in
dense medium has been investigated �20�. Agarwal and Pat-
naik �21� have shown that coherences in two multilevel at-

oms can be generated from their interaction with a common
vacuum bath via the retarded dipole-dipole coupling when
they are brought to a close proximity of each other. Effect of
such vacuum-induced coherence �VIC� on the collective
resonance fluorescence is discussed in �22�. SGE is particu-
larly interesting from the application point of view because
practical quantum devices are often unavoidably coupled to
the environmental bath and hence SGE can occur naturally.

Most of the works listed above are focused on SGE in
two-level atoms. Study of multilevel systems is important
because, in certain situations, participation of additional in-
ternal atomic levels in the process of generating entangle-
ment or causing disentanglement is unavoidable. For ex-
ample, when two atoms, having a triplet P state as their
excited �21� or ground �22� state, are placed in close prox-
imity �i.e., the interatomic distance is less than the wave-
length of the atomic transitions involved, R��0�, even the
dipoles associated with orthogonal �� transition moments
can radiatively couple to generate additional coherences. Re-
cently, Kiffner et al. �23� have explicitly shown that the two-
level approximation fails in such a situation. Furthermore,
multilevel systems can open up new channels in bath assisted
SGE in a very natural way and can provide us more control
parameters �24�. To the best of our knowledge, only a few
literature exist that addresses entanglement in three-level at-
oms interacting with a continuum via the radiative coupling
�17,24� where decoherence free subspace is investigated.
However, to our knowledge a sustainable SGE in multilevel
atomic systems has never been reported.

In this paper, we investigate the steady-state SGE between
two radiatively coupled and incoherently pumped atoms hav-
ing their energy levels in a V configuration with nondegen-
erate excited states; see Fig. 1. We derive a master equation
and trace over the field part to obtain the equations for the
atomic dynamics. We are able to obtain an analytical solution
to show that multilevel systems are preferable compared to
two-level systems for SGE due to availability of additional
coupling channels to establish the entanglement. We demon-
strate that a sustainable steady-state entanglement can be
achieved by purely incoherent processes. It may be noted
that we are working outside the regime of VIC. In our two-
atom system VIC could be generated if the excited states of
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both the atoms were degenerate or near degenerate �21,22�.
The organization of the paper is as follow: in Sec. II we

derive a master equation for the two atoms interacting with
the common vacuum, a reduced density-matrix equation that
determines the system dynamics. In Sec. III, we present the
time evolution of the entanglement between the two atoms
that survives only for a short period of time. In Sec. IV, we
derive the atomic density-matrix equations for incoherently
pumped atoms. We show that a sustainable steady-state en-
tanglement can be obtained between the two atoms purely
via incoherent processes. We summarize and discuss our re-
sult in Sec. V.

II. TWO-ATOM SYSTEM AND THEIR DYNAMICS

We consider two identical three-level V systems �say A
and B� in free space having two excited states �e�� and ����
��=A ,B�, and a ground state �g��, as depicted in Fig. 1. Both
the atoms couple to the same vacuum field. We do not wish
to loose the generality of our results but to give an example,
our scheme can correspond to two 40Ca atoms in a magneto-
optical trap in presence of a static magnetic field. The ground
state can correspond to 4 1S0 state and the excited states can
correspond to the magnetic sublevels 4 1P1 of Ca atom. The
static magnetic field would remove the degeneracy of the
4 1P1 sublevels. The states �e�� and ���� can correspond to
ml= �1 levels. Note that we restrict ourselves to a situation
where the cross couplings between �e��↔ �g�� and
����↔ �g�� transitions are eliminated by considering the non-
degenerate excited states. Thus the photon emitted from
�e��→ �g�������→ �g��� can only be absorbed by �g��
→ �e����g��→ �����. For simplicity, we consider only the
case of real dipole moments for our discussion below. These
results can be easily generalized to complex dipoles, e.g.,
involving magnetic sublevels.

In this section, we derive the system dynamics with only
the contributions from the two atoms and vacuum coupling,
i.e., in absence of incoherent pumping. The role of incoher-
ent pumping will be discussed in detail in Sec. IV. The
Hamiltonian of the two-atom system interacting with the
vacuum field can be written in the interaction picture as

HI = �
�=A,B

��
ks

deg
� �eg

� akse
i�k�·x��+��1−�ks�t�

+ �
k�s�

d�g
� ��g

� ak�s�e
i�k�� ·x��+��2−�k�s��t� + H.c.	 , �1�

where the vacuum Rabi coupling coefficients corresponding
to atom � are

deg
� = i�2�	�ks

V
	1/2

�� eg
� · 
�ks,

and d�g
� = i�2�	�k�s�

V
	1/2

�� �g
� · 
�k�s�, �2�

and �� eg
� ��� �g

� � is the dipole matrix element corresponding to
the transition operator �eg

� = �e��
g�����g
� = ����
g���, 
�ks�
�k�s��

is the unit polarization vector of the vacuum mode with fre-
quency �ks ��k�s��, aks �ak�s�� is the photon annihilation op-
erator corresponding to the vacuum field with wave vector
k�k�� and polarization s �s��, �1 ��2� is the atomic frequency
corresponding to �e��↔ �g�������↔ �g��� transitions, and x�

is the position of the atom �.
We use the Zwanzig projection operator method �25,26�

to trace over the field degrees of freedom and obtain a re-
duced density-matrix equation for the atoms. We use the
Born and Markoff approximation to obtain a memoryless
master equation. Referring to Ref. �21� and without duplicat-
ing the lengthy calculation, we write the reduced density-
matrix equation for the atoms as

�̇ = − i�Vdd,�� + �Ls + Ldd�� , �3�

where

Vdd = G1�eg
A

� �ge
B + G2��g

A
� �g�

B + H.c. �4�

is the part of the dd interaction that contributes to the level
shift. The coupling coefficients are

G1 = �
ks

�

	2��1 − �ks�
deg

A dge
B eik�·R� ,

G2 = �
ql

�

	2��2 − �ql�
d�g

A dg�
B eik�·R� . �5�

Here R� =x�A−x�B. Further, the Liouvillian operators L j are

Ls� = �1��2�ge
A ��eg

A − �ee
A � − ��ee

A � + A → B� + �2��2�g�
A ���g

A

− ���
A � − ����

A � + A → B� , �6�

corresponding to spontaneous emission of the atoms, and

Ldd� = �1�2�ge
B ��eg

A − �eg
A �ge

B � − ��eg
A �ge

B � + H.c.�

+ �2�2�g�
B ���g

A − ��g
A �g�

B � − ���g
A �g�

B � + H.c.� ,

�7�

corresponding to the dd coupling mediated by the vacuum.
Note that the subscript in �a is dropped for brevity. Here the
spontaneous decay rates are given as

ωks ωk s ωks

e
µ

e

g g

atom A atom B

ωk s

µ

Λ1
2Λ Λ1 2Λ

A

B

A

A

B
B

O O
R

FIG. 1. �Color online� The two identical atoms under consider-
ation. The V type atoms with nondegenerate excited states. The
distance between the two atoms is considered to be small compared
to the radiation wavelength, R��0.
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�1 =
1

	2�
ks

����1 − �ks��deg�2,

�2 =
1

	2�
ql

����2 − �ql��d�g�2, �8�

and the atom-atom coupling coefficients are obtained as

1 =
1

	2�
ks

����1 − �ks��deg�2eik�·R� ,

2 =
1

	2�
ks

����2 − �ql��d�g�2eik�·R� . �9�

Further the index � has been dropped as we consider that the
atomic dipoles corresponding to the same atomic transitions
are parallel to each other, i.e., �� ij

A ��� ij
B. Clearly, the radiative

coupling terms i and Gi have numerical significance only in
the limit �kR� and �k�R��1. In the other limit, when the in-
teratomic distance R is too large, only the spontaneous emis-
sion terms survive and the atoms behave as two independent
and uncorrelated systems. We refer to �21� for the detailed
steps of the calculation.

Now let us assume that initially the two-atom state is
�e��, where we use the notation �ij���iA� � �jB�, i , j=e ,� ,g.
The nine two-atom basis states are �ee�, �e��, �eg�, ��e�,
����, ��g�, �ge�, �g��, and �gg�, and we number them one
through nine in the same order as above to simplify the no-
tations for the density-matrix elements 
iAjB���iA� jB��. For ex-
ample, the density-matrix element 
eA�B���eA�B� corre-
sponding to our initial state �e�� is represented as �22 in the
above notation. The full density-matrix equation involves 81
matrix elements but for the above initial condition, many
matrix elements are identically zero and only ten density-
matrix elements survive. We consider the geometry where
dipole matrix elements are orthogonal to each other and are
real �corresponding to real dipole moments as discussed in
Sec. III of �21��, such that the parameters Gi, �i, and i are
real numbers. In the following, we explicitly write the dy-
namics equations only for those surviving density-matrix el-
ements as

�̇22 = − 2��1 + �2��22,

�̇33 = − 2�1�33 + 2�2�22 − 1��73 + �37� − iG1��73 − �37� ,

�̇37 = − 2�1�37 − 1��77 + �33� − iG1��77 − �33� ,

�̇66 = − 2�2�66 − 2��86 + �68� − iG2��86 − �68� ,

�̇68 = − 2�2�68 − 2��88 + �66� − iG2��88 − �66� ,

�̇77 = − 2�1�77 − 1��37 + �73� − iG1��37 − �73� ,

�̇88 = − 2�2�88 + 2�1�22 − 2��86 + �68� − iG2��68 − �86� ,

�̇99 = 2�1��33 + �77� + 2�2��66 + �88� + 21��37 + �73�

+ 22��68 + �86� . �10�

Note that the conjugate matrix elements �73 and �86 �conju-
gates of �37 and �68, respectively� also evolve. Using the
Laplace transform method, we solve the above coupled equa-
tions for the density-matrix elements with the initial condi-
tion �22=1 to obtain their time evolution as

�22�t� = e−2��1+�2�t,

�33�t� =
�2e−2�1t

2

� �2 cosh�21t� − 1 sinh�21t� − �2e−2�2t

�2
2 − 1

2

+
�2 cos�2G1t� + G1 sin�2G1t� − �2e−2�2t

�2
2 + G1

2 � ,

�37�t� =
�2e−2�1t

2

� 1e−2�2t − 1 cosh�21t� + �2 sinh�21t�
1

2 − �2
2

−
iG1 cos�2G1t� − i�2 sin�2G1t� − iG1e−2�2t

G1
2 + �2

2 � ,

�66�t� =
�1e−2�2t

2

� �1 cosh�22t� − 2 sinh�22t� − �1e−2�1t

�1
2 − 2

2

−
�1 cos�2G2t� + G2 sin�2G2t� − �1e−2�1t

�1
2 + G2

2 � ,

�68�t� = �37
� �t��1↔2,�77�t� = �66�t��1↔2,

�88�t� = �33�t��1↔2,

�99�t� = 1 − �22 − �33�t� − �66�t� − �77�t� − �88�t� . �11�

It may be noted that the initial state �22�
eA�B���eA�B� de-
cays with a rate of the sum of the decays of both excited
states but does not depend on the dd coupling terms i and
Gi. However, the other population and cross terms strongly
depend on the dd coupling. The coupling coefficient i rep-
resents decay of the two-atom system via the cosine and sine
hyperbolic functions, and Gi is the dd coupling induced
vacuum Rabi oscillations. The time dependent solutions of
the matrix elements show the oscillations with frequencies
determined by the atom-atom coupling coefficients G1 and
G2. Furthermore, the dd couplings are strongly dependent on
the interatomic distance R. Hence the dynamics of the
density-matrix elements are also strongly affected by R. In
the following section, we will present numerical plots and
discussions for some of the important density-matrix ele-
ments that help in generating the SGE.
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III. TIME EVOLUTION OF SGE

In this section, we calculate the time evolution of the
entanglement between two atoms. Out of various different
methods to calculate entanglement between the two atoms,
we choose the negativity, defined by �27�

N��� =
��TA� − 1

2
= − �

i

��i, �12�

as the measure of entanglement. Here ��TA� denotes the trace
norm of �TA �28�; �TA is the partial transposition matrix of the
atomic system density operator ��t�. The primed sum in the
above equation represents the sum over only the negative
eigenvalues �i of �TA. For a high dimensional system, while
a nonzero N��� is a sufficient condition to prove that a sys-
tem is entangled, a null N��� does not necessarily confirm
that the system is not entangled �29�. However, in the fol-
lowing we will show that for our system, N����0 is both
necessary and sufficient condition for entanglement. From
the definition, the negativity N can also be greater than unity.
For different dimensions of the density matrix, the maximum
value of N is different. For a two-atom three-level system,
such as ours, the state �= 1

�3
��ee�+ ����+ �gg�� is maximally

entangled one with the negativity N���=1.
To obtain negativity in our two-atom system, we first cal-

culate the eigenvalues �i of �TA by using the density matrix
��t�. After a lengthy calculation, we obtain the exact eigen-
values as

�1 = �2 = 0, �3 = �22�t�, �4 = �33�t� ,

�5 = �66�t�, �6 = �77�t�, �7 = �88�t� ,

�8 =
�99�t�

2
+

1

2
��99

2 �t� + 4���37�t��2 + ��68�t��2� ,

�9 =
�99�t�

2
−

1

2
��99

2 �t� + 4���37�t��2 + ��68�t��2� . �13�

Among all of the above eigenvalues, only �9 can become
negative. Clearly, for �9 to be negative, at least one of the
matrix element �37�
eg���ge� or �68�
�g���g�� should be
nonzero, i.e., there should be exchange in at least one photon
between two atoms.

Entanglement between the two atoms can be created only
if they interact. Therefore, if there is no photon-exchange
interaction between the two atoms, there is no entanglement
in the system. Mathematically, if all off-diagonal elements
are identically zero, ��37=�68=0�, from Eq. �13�, �9=0 and
hence N���=0, then there is no entanglement in the system.
However, if any one of the above photon-exchange interac-
tion occurs, then �9 becomes negative and hence N����0,
which is a sufficient condition to prove occurrence of SGE.
Therefore, nonzero negativity is both a necessary and suffi-
cient condition for entanglement in the dynamics of our two-
atom model, unlike the general case in �29�. Hence negative
�9 is a good measure of entanglement in our system. Note
that, both �37 and �68 contribute to the generation of en-
tanglement, thus the three-level atoms offer us more chan-

nels to establish entanglement than two-level atoms.
Before we discuss evolution of SGE, we present study of

the density-matrix elements �37�t� and �99�t� that determine
the entanglement. Note that the two excited states are non-
degenerate. Assuming that �2=r�1, and say �1=�, 1=,
G1=G, we have �2=r�, 2=r, and G2=rG. For the nu-
merical plots presented below, we use the parameters given
in Table I determined from their definitions in Eqs. �5�, �8�,
and �9� �30�. Also note that both i and Gi oscillate with the
interatomic distance �21�. However, peak value of i �Gi�
decreases with as interatomic distance decreases due to re-
duced dipole-dipole coupling between the two atoms. Thus,
i �Gi� can have same value in two or more values inter-
atomic distances. But for a given interatomic distance, the
value of the pair �i, Gi� determine the effective dd coupling.
We will concentrate on the photon-exchange process for a
decreased trend of i �Gi� with an increased interatomic
separation, such that the parameters given in Table I are ap-
proximately monotonic.

Using the above set of parameters, we present the evolu-
tion of the density-matrix element �37= 
eg���ge� represent-
ing the single-photon radiative coupling process in Fig. 2.
Here, atom A loses its excitation to excite atom B from its
ground state �gA� to the state �eB�. It is observed that initially
the number of photon-exchange events increase with time.

TABLE I. The interatomic distance and the corresponding cou-
pling parameters. All the frequency units are scaled with �.

R
�in unit of �0� 1 2 G1 G2

0.50 0.96�1 0.96�2 8.0�1 8.0�2

0.83 0.9�1 0.9�2 2.4�1 2.4�2

1.18 0.8�1 0.8�2 0.9�1 0.9�2

2.78 0.2�1 0.2�2 −0.24�1 −0.24�2

0 5 10 15

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0 0 1 2 3 4
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

γ t γ t

R
eρ
37

Im
ρ 3
7

(a) (b)

FIG. 2. �Color online� The time dependence of real and imagi-
nary parts of matrix element �37�t� with different values of 1�2�
and G1�G2�. We set �=1, r=1.2. The parameters �G ,�
��2.4,0.9�, �0.9,0.8�, and �−0.24,0.2� correspond to R=0.83�1,
1.18�1, and 2.78�1 that are represented in the figure as the solid,
dashed, and dotted lines, respectively.
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However, after reaching a maximum, Re �37 falls off quickly
within one spontaneous emission cycle. The time needed to
reach the maximum value for Re �37 is determined by −1.
The maximum of Im �37 occurs at t��−1. In long-time limit
both real and imaginary parts of �37 vanish. Similar conclu-
sions can be derived for the matrix element �68 which physi-
cally represents the simultaneous probability of two pro-
cesses ��A�→ �gA� and �gB�→ ��B�.

In Fig. 3 we present the evolution of the population in the
state �gg�, i.e., the matrix element �99�t�. This plot also sup-
ports the physical process we described above. We can see
that again large values of  slows down �99�t� to reach at its
asymptotic value. In other words, the radiative coupling pro-
cess survives longer due to the enhanced photon-exchange
process with stronger dd coupling strength. The steady-state
value is �99=1, i.e., both the atoms reach their ground states
in the long-time limit.

Next, we discuss the property of the entanglement gener-
ated in this atom pair. We present the plot of N�t� that de-
scribes the time evolution of the SGE for different values of
 and G in Fig. 4. It is shown that at t=0, there is no en-
tanglement because initially the atomic system is in the state
�e��. For t�0, N�t� evolves to reach its maximum value, and
then undergoes a process of disentanglement. Finally, steady
state of negativity becomes identically zero. But the relax-
ation time for N becomes longer with smaller interatomic
distances for our chosen parameters. From the solution �Eq.
�11��, we know that relaxation time of Re ��37� is determined
by max� 1

2��1+1� , 1
2��1−1� � which means that the larger the

value of �1�, the longer the relaxation time for disentangle-
ment. Note that the relaxation time is determined by two
competing radiative processes: the photon exchange between
the atoms that leads to SGE and the loss of photon due to
spontaneous emission that occurs in all 4� direction. The
evolution of SGE can be understood as due to the following
multiple radiative exchange processes: spontaneous emission
of atom A via �eA�→ �gA� �atom B via ��B�→ �gB�� transition
is followed by an absorption of the spontaneously emitted
radiation by atom B via �gB�→ �eB� �atom A via �gA�→ ��A��,
as it is expressed by �37�t� ��68�t�� causing the two-atom
entanglement.

IV. STEADY STATE ENTANGLEMENT WITH
BROADBAND INCOHERENT PUMPING

From the previous section, we have seen that the disad-
vantage of SGE is: although SGE evolves in time due to dd
coupling, it quickly diminishes due to the spontaneous de-
cays in the system. However, for any useful application, for
example, to use the two-atom system as a coupled qubit,
sustaining the generated SGE is essential. In order to achieve
a steady-state entanglement, we introduce an incoherent
pump to continually repump population to the excited states
as shown in Fig. 1. Steady state entanglement between two
two-level atoms using a monochromatic coherent pumping is
discussed in �31�. Coherent field assisted entanglement is
rather intuitive. On the contrary, an incoherent pumping
would be usually associated with decoherence and, hence,
disentanglement in the system. However, in what follows
below, we show that an appropriate strength of incoherent
pump can lead to a steady entanglement between the two
atoms, without requiring any additional atomic coherences,
unlike in Ref. �31�. The SGE described below is generated
purely by incoherent processes.

We consider a broadband incoherent pump acting on the
two atoms which incoherently drive the population from �g�
to �e� and ��� levels. Incoherent pumping can be modeled as
an inverse process of spontaneous emission �32,33�. Thus we
add a third Liouvillian Linc to the master equation �Eq. �4��
to get

�̇ = − i�Vdd,�� + �Ls + Ldd + Linc�� , �14�

where

Linc� = �1��2�eg
A ��ge

A − �gg
A � − ��gg

A � + A → B�

+ �2��2��g
A ��g�

A − ���
A � − ����

A � + A → B� ,

�15�

where �1 and �2 denote incoherent pumping rates for �g��
→ �e�� and �g��→ ���� transitions, respectively. We explicitly
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FIG. 3. �Color online� The matrix element for our atomic system
as a function of t corresponding to different pairs of �G, �. The
curves and also corresponding legends are the same as in Fig. 2.
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FIG. 4. �Color online� The negativity for our atomic system as a
function of t corresponding to different pairs of �G, �. All the
parameters correspond to Fig. 2, respectively.
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write the density-matrix equations involved in presence of
the incoherent pump as

�̇11 = − 4�1�11 + 2�1��77 + �33� ,

�̇22 = − 2��1 + �2��22 + 2�1�88 + 2�2�33,

�̇33 = − 2s1�33 + 2�2�22 + 2�1�11 + 2�1�99 − iG1��73 − �37�

− 1��73 + �37� ,

�̇37 = − 2s1�37 − 1��77 + �33� + 21�11 − iG1��77 − �33� ,

�̇44 = − 2��1 + �2��44 + 2�1�66 + 2�2�77,

�̇55 = − 4�2�55 + 2�2��66 + �88� ,

�̇66 = − 2s2�66 + 2�1�44 + 2�2�55 + 2�2�99 − iG2��86 − �68�

− 2��86 + �68� ,

�̇68 = − 2s2�68 − 2��88 + �66� + 21�55 − iG2��88 − �66� ,

�̇77 = − 2s1�77 + 2�1�11 + 2�2�44 + 2�1�99 − 1��37 + �73�

− iG1��37 − �73� ,

�̇88 = − 2s2�88 + 2�1�22 + 2�2�55 + 2�2�99 − 2��86 + �68�

− iG2��68 − �86� ,

�̇99 = 2�1��33 + �77� + 2�2��66 + �88� − 4��1 + �2��99

+ 21��37 + �73� + 22��68 + �86� . �16�

where s�=��+�1+�2 ��=1,2�. Note that in presence of the
incoherent pumping �i, the nonzero additional terms are the
populations �ee�, ����, and ��e�. Hence we have a total of 13
nonvanishing density-matrix elements in presence of �i.
Since we are looking for a steady-state SGE, we calculate the
steady-state values of the matrix elements by setting the dif-
ferentials in the left-hand sides of Eqs. �16� to zero and solv-
ing the coupled linear equations. The analytical solutions that
we obtain are

�11 =
�2

b
�1a2,

�22 =
�1�2

b��1 + �2�
�a1�1 + a2�2� ,

�33 =
�1�2

b
a2,

�37 =
1�2

s1b
��1 − �1�a2, �44 = �22,

�55 =
�1a1

b
�2, �66 =

�1�2a1

b
,

�68 =
�12

s2b
��2 − �2�a1,

�77 = �33, �88 = �66,

�99 =
2�1�2

b
��1a2 + a1�2� , �17�

with

a1 = �2��1 + 2�1��1 + �2�� ,

a2 = �1��2 + 2�2��1 + �2�� ,

� j =
s���

2 + �
2��� − ���

2s�����1 + �2�
, j = 1,2,

b = 2�1�2��1 + �2����1 + 1�a2 + ��2 + 1�a1�

+ ��1 + �2��a2�2�1 + a1�1�2� + �1�2�2a2�2 + 2a1�1� .

�18�

It is interesting to note that the steady state of the density-
matrix elements do not depend on G1 and G2. The level shift
parameters G1 and G2 typically contribute to oscillation of
population and coherence terms. In the steady-state limit,
such oscillation terms vanish. Thus the above solutions in
Eq. �17� are independent of G1 and G2.

Once again, as in the previous section, we calculate the
eigenvalues of �TA to measure the entanglement. We obtain
equation for the nonzero eigenvalues as

��11 − ����55 − ����99 − �� − ��37�2��55 − �� − ��68�2��11 − ��

= 0. �19�

We obtain the numerical values of � solving the above equa-
tion and substitute it in Eq. �12� to obtain the steady-state
negativity as a function of �i, as shown in Fig. 5. We have
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FIG. 5. �Color online� The steady-state negativity for our atomic
system as a function of �, where we set �1=�2=�, �1=�=1, r
=1.2, and �2=r�. From bottom to top, the values of =0.8, 0.9, and
0.96, corresponding to R=1.18�1, 0.83�1, and 0.5�1, respectively.
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scaled the incoherent pumping rate �i with the spontaneous
decay rate �1=� and also for simplicity we have assumed
�1=�2=�. Clearly, a nonzero steady-state entanglement is
obtained by incoherently repumping the excited state. The
larger the value of , the larger is the steady-state entangle-
ment. Furthermore, as the incoherent pumping rate is in-
creased the SGE increases but after reaching a certain opti-
mal value at around ��0.08�, the atomic entanglement
starts to reduce. For smaller interatomic distances, even
stronger incoherent pumping can be used to obtain SGE.
Without any incoherent pumping the steady-state SGE van-
ishes.

Physically, the increase in entanglement with the incoher-
ent pumping can be understood as follows: the spontaneous
emission in either of the two atoms followed by exchange of
photons between them generates SGE. But that does not sur-
vive long because the spontaneously emitted photon can es-
cape in any arbitrary direction. Once both atoms loose their
excitation, SGE vanishes. An incoherent pump assists the
atoms to bring back the desirable excitation so that more
spontaneous emissions and hence photon exchanges can take
place between the two atoms. Thus, increasing the repump-
ing via incoherent pumping helps increase the SGE. How-
ever, incoherent repumping also competes with the photon-
exchange process to re-excite the atoms. While an excitation
due to the photon-exchange process enhances the entangle-
ment, an excitation by incoherent process has no direct con-
tribution to the entanglement. In fact, for a larger �, the
incoherent excitation dominates the photon-exchange pro-
cess and hence causes a decrease in SGE. For ��i, Gi,
SGE becomes identically zero. This study clearly shows that,
to generate maximum steady-state SGE between two atoms,
there exists an optimal incoherent pumping rate which is
determined by the dd coupling parameters and decay param-
eters of the system.

V. DISCUSSION AND SUMMARY

We have investigated the spontaneously generated en-
tanglement in a system of two three-level atoms that are
coupled to a common vacuum field. We have presented time
evolution of SGE due to the photon exchange between the

two atoms. We have shown that both the magnitude of en-
tanglement and the survival period of SGE are effectively
enhanced by reducing the interatomic distance. From our
analytical calculations, we have shown the strong depen-
dence of the SGE on the radiative coupling parameters. We
have demonstrated that the multilevel atoms are suitable for
SGE due to availability of additional channels to establish
entanglement. In the long-time limit, however, SGE van-
ishes.

Furthermore, to reinforce the above short term evolution
of SGE in the radiatively coupled two-atom system, we have
proposed using an incoherent pump that assists in repumping
the deexcited atoms to generate a sustainable steady-state
SGE. We have demonstrated that, for a certain range of in-
coherent pumping, the steady-state value of SGE increases as
it prevents atoms from loosing their excited-state population.
However, since incoherent pumping competes with the two-
atom photon-exchange process to re-excite the atoms, a
stronger incoherent pumping is shown to be undesirable. We
have shown that an appropriate rate of incoherent pump can
help in producing optimal SGE.

The radiative coupling discussed in this paper can be re-
alized in a tight ion trap. However, this work can be gener-
alized to realizing SGE in a chain of quantum dots or even in
a typical dense multiatom system. We believe this work will
open up a new way to utilize the naturally occurring SGE for
realization of an efficient entanglement source. The above
entanglement can further increase �not discussed here� if one
considers atoms having degenerate or near degenerate ex-
cited states which has additional VIC �21�. We will discuss
this situation elsewhere.
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