121 research outputs found

    Deciphering M-T diagram of shape memory Heusler alloys: reentrance, plateau and beyond

    Full text link
    We present our recent results on temperature behaviour of magnetization observed in Ni_47Mn_39In_14 Heusler alloys. Three regions can be distinguished in the M-T diagram: (I) low temperature martensitic phase (with the Curie temperature T_CM = 140 K), (II) intermediate mixed phase (with the critical temperature T_MS = 230 K) exhibiting a reentrant like behavior (between T_CM and T_MS) and (III) high temperature austenitic phase (with the Curie temperature T_CA = 320 K) exhibiting a rather wide plateau region (between T_MS and T_CA). By arguing that powerful structural transformations, causing drastic modifications of the domain structure in alloys, would also trigger strong fluctuations of the order parameters throughout the entire M-T diagram, we were able to successfully fit all the data by incorporating Gaussian fluctuations (both above and below the above three critical temperatures) into the Ginzburg-Landau scenario

    Three-dimensional dualities with bosons and fermions

    Get PDF
    We propose new infinite families of non-supersymmetric IR dualities in three space-time dimensions, between Chern-Simons gauge theories (with classical gauge groups) with both scalars and fermions in the fundamental representation. In all cases we study the phase diagram as we vary two relevant couplings, finding interesting lines of phase transitions. In various cases the dualities lead to predictions about multi-critical fixed points and the emergence of IR quantum symmetries. For unitary groups we also discuss the coupling to background gauge fields and the map of simple monopole operators. \ua9 2018, The Author(s)

    Thermomagnetic and magnetocaloric properties of metamagnetic Ni-Mn-In-Co Heusler alloy in magnetic fields up to 140 kOe

    Get PDF
    High cooling power of magnetocaloric refrigeration can be achieved only at large amounts of heat, which can be transferred in one cycle from cold end hot end at quasi-isothermal conditions. The simple and robust experimental method of direct measuring of the transferred heat of materials with magnetocaloric effect (MCE) in thermal contact with massive copper block with definite heat capacity in quasi-isothermal regime was proposed. The vacuum calorimeter for the specific transferred heat ∆Q and adiabatic temperature change ∆T measurements of MCE materials in the fields of Bitter coil magnet up to H = 140 kOe was designed and tested on samples of Ni43Mn37.9In12.1Co7 Heusler alloy with inverse MCE in the vicinity of meta-magnetostructural phase transition (PT). It was found, that the magnetic field H = 80 kOe produces complete PT from martensite to austenite with ∆Q = - 1600 J/kg at initial temperature 273 K

    Constraining conformal field theories with a slightly broken higher spin symmetry

    Full text link
    We consider three dimensional conformal field theories that have a higher spin symmetry that is slightly broken. The theories have a large N limit, in the sense that the operators separate into single trace and multitrace and obey the usual large N factorization properties. We assume that the spectrum of single trace operators is similar to the one that one gets in the Vasiliev theories. Namely, the only single trace operators are the higher spin currents plus an additional scalar. The anomalous dimensions of the higher spin currents are of order 1/N. Using the slightly broken higher spin symmetry we constrain the three point functions of the theories to leading order in N. We show that there are two families of solutions. One family can be realized as a theory of N fermions with an O(N) Chern-Simons gauge field, the other as a N bosons plus the Chern-Simons gauge field. The family of solutions is parametrized by the 't Hooft coupling. At special parity preserving points we get the critical O(N) models, both the Wilson-Fisher one and the Gross-Neveu one. Our analysis also fixes the on shell three point functions of Vasiliev's theory on AdS_4 or dS_4.Comment: 54 pages, 3 figure

    Stability of the monoclinic phase in the ferroelectric perovskite PbZr(1-x)TixO3

    Get PDF
    Recent structural studies of ferroelectric PbZr(1-x)TixO3 (PZT) with x= 0.48, have revealed a new monoclinic phase in the vicinity of the morphotropic phase boundary (MPB), previously regarded as the the boundary separating the rhombohedral and tetragonal regions of the PZT phase diagram. In the present paper, the stability region of all three phases has been established from high resolution synchrotron x-ray powder diffraction measurements on a series of highly homogeneous samples with 0.42 <=x<= 0.52. At 20K the monoclinic phase is stable in the range 0.46 <=x<= 0.51, and this range narrows as the temperature is increased. A first-order phase transition from tetragonal to rhombohedral symmetry is observed only for x= 0.45. The MPB, therefore, corresponds not to the tetragonal-rhombohedral phase boundary, but instead to the boundary between the tetragonal and monoclinic phases for 0.46 <=x<= 0.51. This result provides important insight into the close relationship between the monoclinic phase and the striking piezoelectric properties of PZT; in particular, investigations of poled samples have shown that the monoclinic distortion is the origin of the unusually high piezoelectric response of PZT.Comment: REVTeX file, 7 figures embedde

    Multifield Dynamics in Higgs-otic Inflation

    Full text link
    In Higgs-otic inflation a complex neutral scalar combination of the h0h^0 and H0H^0 MSSM Higgs fields plays the role of inflaton in a chaotic fashion. The potential is protected from large trans-Planckian corrections at large inflaton if the system is embedded in string theory so that the Higgs fields parametrize a D-brane position. The inflaton potential is then given by a DBI+CS D-brane action yielding an approximate linear behaviour at large field. The inflaton scalar potential is a 2-field model with specific non-canonical kinetic terms. Previous computations of the cosmological parameters (i.e. scalar and tensor perturbations) did not take into account the full 2-field character of the model, ignoring in particular the presence of isocurvature perturbations and their coupling to the adiabatic modes. It is well known that for generic 2-field potentials such effects may significantly alter the observational signatures of a given model. We perform a full analysis of adiabatic and isocurvature perturbations in the Higgs-otic 2-field model. We show that the predictivity of the model is increased compared to the adiabatic approximation. Isocurvature perturbations moderately feed back into adiabatic fluctuations. However, the isocurvature component is exponentially damped by the end of inflation. The tensor to scalar ratio varies in a region r=0.080.12r=0.08-0.12, consistent with combined Planck/BICEP results.Comment: 35 pages, 11 figure

    The Higher Spin/Vector Model Duality

    Full text link
    This paper is mainly a review of the dualities between Vasiliev's higher spin gauge theories in AdS4 and three dimensional large N vector models, with focus on the holographic calculation of correlation functions of higher spin currents. We also present some new results in the computation of parity odd structures in the three point functions in parity violating Vasiliev theories.Comment: 55 pages, 1 figure. Contribution to J. Phys. A special volume on "Higher Spin Theories and AdS/CFT" edited by M. R. Gaberdiel and M. Vasiliev. v2: references adde
    corecore