1,088 research outputs found

    Foundation Design for the Burj Dubai – the World’s Tallest Building

    Get PDF
    This paper describes the foundation design process adopted for the Burj Dubai, the world’s tallest building. The foundation system is a piled raft, founded on deep deposits of carbonate soils and rocks. The paper will outline the geotechnical investigations undertaken, the field and laboratory testing programs, and the design process, and will discuss how various design issues, including cyclic degradation of skin friction due to wind loading, were addressed. The numerical computer analysis that was adopted for the original design together with the check/calibration analyses will be outlined, and then the alternative analysis employed for the peer review process will be described. The paper sets out how the various design issues were addressed, including ultimate capacity, overall stability under wind and seismic loadings, and the settlement and differential settlements. The comprehensive program of pile load testing that was undertaken, which included grouted and non-grouted piles to a maximum load of 64MN, will be presented and “Class A” predictions of the axial load-settlement behaviour will be compared with the measured behavior. The settlements of the towers observed during construction will be compared with those predicted

    CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations

    Get PDF
    CBS domains are defined as sequence motifs that occur in several different proteins in all kingdoms of life. Although thought to be regulatory, their exact functions have been unknown. However, their importance was underlined by findings that mutations in conserved residues within them cause a variety of human hereditary diseases, including (with the gene mutated in parentheses): Wolff-Parkinson-White syndrome (γ2 subunit of AMP-activated protein kinase); retinitis pigmentosa (IMP dehydrogenase-1); congenital myotonia, idiopathic generalized epilepsy, hypercalciuric nephrolithiasis, and classic Bartter syndrome (CLC chloride channel family members); and homocystinuria (cystathionine β-synthase). AMP-activated protein kinase is a sensor of cellular energy status that is activated by AMP and inhibited by ATP, but the location of the regulatory nucleotide-binding sites (which are prime targets for drugs to treat obesity and diabetes) was not characterized. We now show that tandem pairs of CBS domains from AMP-activated protein kinase, IMP dehydrogenase-2, the chloride channel CLC2, and cystathionine β-synthase bind AMP, ATP, or S-adenosyl methionine,while mutations that cause hereditary diseases impair this binding. This shows that tandem pairs of CBS domains act, in most cases, as sensors of cellular energy status and, as such, represent a newly identified class of binding domain for adenosine derivatives

    Pairing Neutral Cues with Alcohol Intoxication: New Findings in Executive and Attention Networks

    Get PDF
    Rationale: Alcohol-associated stimuli capture attention, yet drinkers differ in the precise stimuli that become paired with intoxication. Objectives: Extending our prior work to examine the influence of alcoholism risk factors, we paired abstract visual stimuli with intravenous alcohol delivered covertly and examined brain responses to these Pavlovian conditioned stimuli in fMRI when subjects were not intoxicated. Methods: Sixty healthy drinkers performed task-irrelevant alcohol conditioning that presented geometric shapes as conditioned stimuli. Shapes were paired with a rapidly rising alcohol limb (CS+) using intravenous alcohol infusion targeting a final peak breath alcohol concentration of 0.045 g/dL or saline (CS−) infusion at matched rates. On day two, subjects performed monetary delay discounting outside the scanner to assess delay tolerance and then underwent event-related fMRI while performing the same task with CS+, CS−, and an irrelevant symbol. Results: CS+ elicited stronger activation than CS− in frontoparietal executive/attention and orbitofrontal reward-associated networks. Risk factors including family history, recent drinking, sex, and age of drinking onset did not relate to the [CS+ > CS−] activation. Delay-tolerant choice and [CS+ > CS−] activation in right inferior parietal cortex were positively related. Conclusions: Networks governing executive attention and reward showed enhanced responses to stimuli experimentally paired with intoxication, with the right parietal cortex implicated in both alcohol cue pairing and intertemporal choice. While different from our previous study results in 14 men, we believe this paradigm in a large sample of male and female drinkers offers novel insights into Pavlovian processes less affected by idiosyncratic drug associations

    Phase field modeling of electrochemistry II: Kinetics

    Full text link
    The kinetic behavior of a phase field model of electrochemistry is explored for advancing (electrodeposition) and receding (electrodissolution) conditions in one dimension. We described the equilibrium behavior of this model in [J. E. Guyer, W. J. Boettinger, J.A. Warren, and G. B. McFadden, ``Phase field modeling of electrochemistry I: Equilibrium'', cond-mat/0308173]. We examine the relationship between the parameters of the phase field method and the more typical parameters of electrochemistry. We demonstrate ohmic conduction in the electrode and ionic conduction in the electrolyte. We find that, despite making simple, linear dynamic postulates, we obtain the nonlinear relationship between current and overpotential predicted by the classical ``Butler-Volmer'' equation and observed in electrochemical experiments. The charge distribution in the interfacial double layer changes with the passage of current and, at sufficiently high currents, we find that the diffusion limited deposition of a more noble cation leads to alloy deposition with less noble species.Comment: v3: To be published in Phys. Rev. E v2: Attempt to work around turnpage bug. Replaced color Fig. 4a with grayscale 13 pages, 7 figures in 10 files, REVTeX 4, SIunits.sty, follows cond-mat/030817

    Phase field modeling of electrochemistry I: Equilibrium

    Full text link
    A diffuse interface (phase field) model for an electrochemical system is developed. We describe the minimal set of components needed to model an electrochemical interface and present a variational derivation of the governing equations. With a simple set of assumptions: mass and volume constraints, Poisson's equation, ideal solution thermodynamics in the bulk, and a simple description of the competing energies in the interface, the model captures the charge separation associated with the equilibrium double layer at the electrochemical interface. The decay of the electrostatic potential in the electrolyte agrees with the classical Gouy-Chapman and Debye-H\"uckel theories. We calculate the surface energy, surface charge, and differential capacitance as functions of potential and find qualitative agreement between the model and existing theories and experiments. In particular, the differential capacitance curves exhibit complex shapes with multiple extrema, as exhibited in many electrochemical systems.Comment: v3: To be published in Phys. Rev. E v2: Added link to cond-mat/0308179 in References 13 pages, 6 figures in 15 files, REVTeX 4, SIUnits.sty. Precedes cond-mat/030817

    Glycogen Content Regulates Peroxisome Proliferator Activated Receptor-∂ (PPAR-∂) Activity in Rat Skeletal Muscle

    Get PDF
    Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes regulating mitochondrial β-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC-1α) and the transcription factor/nuclear receptor PPAR-∂. It was therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects PGC-1α and PPAR-∂ function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and analyzed for glycogen content, PPAR-∂ activity via chromatin immunoprecipitation (ChIP) assays, AMPK α1/α2 kinase activity, and the localization of AMPK and PGC-1α. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-α2 activity (147%, p<0.05), nuclear AMPK-α2 and PGC-1α, but no difference in AMPK-α1 activity compared to CON. In addition, PPAR-∂ binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting C2C12 myotubes indicated that PPAR-∂ activity following contraction is sensitive to glucose availability, providing mechanistic insight into the association between PPAR-∂ and glycogen content/substrate availability. The present study is the first to examine PPAR-∂ activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-∂ and initiates AMPK translocation in skeletal muscle in response to exercise

    Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes

    Get PDF
    The adenosine monophosphate (AMP)–activated protein kinase (AMPK) has a crucial role in maintaining cellular energy homeostasis. This study shows that human and mouse T lymphocytes express AMPKα1 and that this is rapidly activated in response to triggering of the T cell antigen receptor (TCR). TCR stimulation of AMPK was dependent on the adaptors LAT and SLP76 and could be mimicked by the elevation of intracellular Ca2+ with Ca2+ ionophores or thapsigargin. AMPK activation was also induced by energy stress and depletion of cellular adenosine triphosphate (ATP). However, TCR and Ca2+ stimulation of AMPK required the activity of Ca2+–calmodulin-dependent protein kinase kinases (CaMKKs), whereas AMPK activation induced by increased AMP/ATP ratios did not. These experiments reveal two distinct pathways for the regulation of AMPK in T lymphocytes. The role of AMPK is to promote ATP conservation and production. The rapid activation of AMPK in response to Ca2+ signaling in T lymphocytes thus reveals that TCR triggering is linked to an evolutionally conserved serine kinase that regulates energy metabolism. Moreover, AMPK does not just react to cellular energy depletion but also anticipates it

    Influenza Vaccine Effectiveness against Hospitalisation with Confirmed Influenza in the 2010-11 Seasons: A Test-negative Observational Study

    Get PDF
    Immunisation programs are designed to reduce serious morbidity and mortality from influenza, but most evidence supporting the effectiveness of this intervention has focused on disease in the community or in primary care settings. We aimed to examine the effectiveness of influenza vaccination against hospitalisation with confirmed influenza. We compared influenza vaccination status in patients hospitalised with PCR-confirmed influenza with patients hospitalised with influenza-negative respiratory infections in an Australian sentinel surveillance system. Vaccine effectiveness was estimated from the odds ratio of vaccination in cases and controls. We performed both simple multivariate regression and a stratified analysis based on propensity score of vaccination. Vaccination status was ascertained in 333 of 598 patients with confirmed influenza and 785 of 1384 test-negative patients. Overall estimated crude vaccine effectiveness was 57% (41%, 68%). After adjusting for age, chronic comorbidities and pregnancy status, the estimated vaccine effectiveness was 37% (95% CI: 12%, 55%). In an analysis accounting for a propensity score for vaccination, the estimated vaccine effectiveness was 48.3% (95% CI: 30.0, 61.8%). Influenza vaccination was moderately protective against hospitalisation with influenza in the 2010 and 2011 seasons

    Development and initial validation of the Bristol Impact of Hypermobility questionnaire

    Get PDF
    © 2016 Chartered Society of Physiotherapy Objectives Stage 1 – to identify the impact of joint hypermobility syndrome (JHS) on adults; Stage 2 – to develop a questionnaire to assess the impact of JHS; and Stage 3 – to undertake item reduction and establish the questionnaire's concurrent validity. Design A mixed methods study employing qualitative focus groups and interviews (Stage 1); a working group of patients, clinicians and researchers, and ‘think aloud’ interviews (Stage 2); and quantitative analysis of questionnaire responses (Stage 3). Setting Stages 1 and 2 took place in one secondary care hospital in the UK. Members of a UK-wide patient organisation were recruited in Stage 3. Participants In total, 15, four and 615 participants took part in Stages 1, 2 and 3, respectively. Inclusion criteria were: age ≥18 years; diagnosis of JHS; no other conditions affecting physical function; able to give informed consent; and able to understand and communicate in English. Interventions None. Main outcome measures The development of a questionnaire to assess the impact of JHS. Results Stage 1 identified a wide range of impairments, activity limitations and participation restrictions In Stage 2, a draft questionnaire was developed and refined following ‘think aloud’ analysis, leaving 94 scored items. In Stage 3, items were removed on the basis of low severity and/or high correlation with other items. The final Bristol Impact of Hypermobility (BIoH) questionnaire had 55 scored items, and correlated well with the physical component score of the Short Form 36 health questionnaire (r=−0.725). Conclusions The BIoH questionnaire demonstrated good concurrent validity. Further psychometric properties need to be established
    corecore