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Abstract

Performing exercise in a glycogen depleted state increases skeletal muscle lipid utilization and the transcription of genes
regulating mitochondrial b-oxidation. Potential candidates for glycogen-mediated metabolic adaptation are the peroxisome
proliferator activated receptor (PPAR) coactivator-1a (PGC-1a) and the transcription factor/nuclear receptor PPAR-h. It was
therefore the aim of the present study to examine whether acute exercise with or without glycogen manipulation affects
PGC-1a and PPAR-h function in rodent skeletal muscle. Twenty female Wistar rats were randomly assigned to 5 experimental
groups (n = 4): control [CON]; normal glycogen control [NG-C]; normal glycogen exercise [NG-E]; low glycogen control [LG-
C]; and low glycogen exercise [LG-E]). Gastrocnemius (GTN) muscles were collected immediately following exercise and
analyzed for glycogen content, PPAR-h activity via chromatin immunoprecipitation (ChIP) assays, AMPK a1/a2 kinase
activity, and the localization of AMPK and PGC-1a. Exercise reduced muscle glycogen by 47 and 75% relative to CON in the
NG-E and LG-E groups, respectively. Exercise that started with low glycogen (LG-E) finished with higher AMPK-a2 activity
(147%, p,0.05), nuclear AMPK-a2 and PGC-1a, but no difference in AMPK-a1 activity compared to CON. In addition, PPAR-h
binding to the CPT1 promoter was significantly increased only in the LG-E group. Finally, cell reporter studies in contracting
C2C12 myotubes indicated that PPAR-h activity following contraction is sensitive to glucose availability, providing
mechanistic insight into the association between PPAR-h and glycogen content/substrate availability. The present study is
the first to examine PPAR-h activity in skeletal muscle in response to an acute bout of endurance exercise. Our data would
suggest that a factor associated with muscle contraction and/or glycogen depletion activates PPAR-h and initiates AMPK
translocation in skeletal muscle in response to exercise.
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Introduction

Skeletal muscle glycogen content determines an individual’s

capacity to sustain long duration exercise [1]. In the absence of

glycogen, muscle increases its metabolic reliance on free fatty acid

(FFA) oxidation [2]. This metabolic flexibility indicates that an

inverse relationship exists between glycogen content and lipid

utilization in skeletal muscle, which might contribute to the

increased capacity for fat oxidation in skeletal muscle following

endurance training [3].

The glycogen content of skeletal muscle has also been shown to

affect the post exercise transcriptional response [4]. Notably,

reducing glycogen content prior to exercise increases the activation

of key genes involved in mitochondrial biogenesis and lipid

oxidation, suggesting that glycogen content regulates the magni-

tude of skeletal muscle adaptation to endurance exercise [4,5,6].

Accordingly, Hansen et al., [7] hypothesised that training with

depleted glycogen would result in greater muscle adaptation than

the equivalent training with normal or high glycogen levels. Over

a 10-week period, human volunteers performed single leg kicking

exercise every day (normal glycogen) or twice every other day (low

glycogen), with the second session performed with low muscle

glycogen. Following the training period there was a greater

increase in time to exhaustion in the low glycogen group and

increased activity of the b-oxidation and TCA enzymes (3-

hydroxyacyl-CoA dehydrogenase (HAD) and citrate synthase (CS))

[7].

Following a similar training design, we [8] and others [9] have

demonstrated that training in a low glycogen state also leads to

increased FFA oxidation in trained cyclists and increases the

mobilization and utilization of intra-muscular triglycerides

(IMTG) [8]. Given this observation, it has been hypothesized

that alterations in FFA availability, potentially as a consequence of

IMTG breakdown, might function as a signal to initiate molecular

adaptation [3]. Two potential targets for circulating FFA are the

peroxisome proliferator activated receptor family of nuclear

receptors (PPAR) and the transcriptional coactivator PGC-1a
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(peroxisome proliferator activated receptor-c coactivtor-1a) [10].

Two PPAR isoforms, PPAR-a and PPAR-h, are expressed in

skeletal muscle and have been shown to control the expression of a

variety of genes involved in FFA utilization and oxidation [11].

Mice with transgenic expression of an activated form of PPAR-h
display increased expression of genes involved in lipid metabolism

and present resistance to high-fat induced obesity [12] suggesting

that PPAR-h might be the molecular target activated by low

glycogen training.

PGC-1a is a transcriptional co-activator known to target

transcription factors regulating mitochondrial metabolism, fatty

acid oxidation enzymes, and angiogenesis in skeletal muscle [13].

PGC-1a function is highly sensitive to exercise, and has been

suggested to co-ordinate the mitochondrial post-exercise tran-

scriptional response [13], although this process can occur

independently of PGC-1a in both rodent [14] and human

[15,16] exercise models. Consistent with this concept, PGC-1a
muscle-specific transgenic mice display a muscle energetic profile

similar to highly trained athletes [17] and an increased expression

of genes known to be involved in lipid utilization and oxidation

[17].

It was therefore the aim of the present study to examine whether

(1) acute exercise alters PGC-1a/PPAR-h activity or localization

in skeletal muscle, and (2) whether manipulating skeletal muscle

glycogen content alters the exercise-induced PGC-1a/PPAR-h
response.

Materials and Methods

Ethical approval
All procedures were approved by the University of Dundee

research ethics committee and performed under UK Home Office

project licence number 60/3441.

Materials
All reagents were from Sigma Aldrich (UK) unless otherwise

stated. Total AMPK a1/a2 antibodies were described previously

[18]. Antibodies against PGC-1a were obtained from Millipore

(AB3242), Histone H2B from AbCam (ab9408), LDH from Sigma

(L7016). (9212) were from Cell Signaling (Cell Signaling, Danvers,

MA).

Exercise protocol
Twenty, female Wistar rats ,200 g (Charles River Laborato-

ries, Tranent, UK) were used for the study. Running experiments

took place on a 3-lane motorized treadmill (Eco 3/6 Treadmill;

Columbus Instruments, Ohio, USA) with the gradient set at 5%.

The exercise protocol is detailed in Figure 1. Briefly, rats (n = 4)

were separated into five groups consisting of a no exercise control

(CON), normal glycogen control (NG-C), normal glycogen

exercise (NG-EX), low glycogen control (LG-C) and low glycogen

exercise (LG-EX). Each rat received three separate habituation

runs (Day 1, 2 and 3) at 17 m.min-1 lasting 10 mins prior to

commencing the main experimental trial. The main experimental

trial consisted of a 60 min exercise bout at 17 m.min-1 followed by

a second 40 min exercise bout 23 h later (NG-E) or 1 h later (LG-

E). The NG-C and LG-C controls were collected following the

23 h or 1 hr recovery period, before the start of the second

exercise bout to allow for assessment of pre-exercise glycogen

levels in the NG-E and LG-E groups. Immediately upon

completion of exercise, rats were terminated via cervical disloca-

tion following concussion, the gastrocnemius muscles were

dissected and snap frozen in liquid nitrogen.

Tissue collection and homogenization
Tissue was powdered under liquid nitrogen using a mortar and

pestle. 50 mg of gastrocnemius muscle was homogenized in 10-

fold mass excess of ice cold sucrose lysis buffer (50 mM Tris

pH 7.5, 250 mM Sucrose, 1 mM EDTA, 1 mM EGTA, 1%

Triton X 100, 50 mM NaF, 1 mM NaVO4 Na2(PO4)2 and 0.1%

DTT) using a hand held homogenizer (Pro 200, PRO scientific

INC, USA). The homogenate was briefly vortexed and centrifuged

at 4uC/8000xg for 10 mins to remove insoluble material. Protein

concentrations were determined using the DC protein assay (Bio-

Rad, Hercules CA).

Glycogen measurements
Powdered muscle (30 mg) was hydrolyzed in 250 ml of 2 N HCl

by heating at 95uC for 3 h. The solution was neutralized with

250 ml 2 N NaOH, and the resulting free glycosyl units were

assayed spectrophotometrically using a hexokinase-dependent

assay kit from Amresco against glucose standards of known

concentrations [19].

Western blot procedures
Equal aliquots of protein were boiled for 5 minutes in 16

Laemmli sample buffer and separated on 7.5 or 10% gels by SDS-

polyacrylamide gel electrophoresis (PAGE). Following electropho-

resis, proteins were transferred for 1 hour at 100 V to a Protran

nitrocellulose membrane (Whatman, Dassel, Germany), blocked

for 1 hour in 3% milk in TBST (Tris-buffered saline +0.1%

Tween), and then incubated over night at 4uC with appropriate

primary antibody in TBST at 1:1000. The following day,

membranes were washed 36 in TBST before incubation for

1 hour at room temperature with peroxidase-conjugated second-

ary antibodies in TBST at 1:10,000 (Perbio Science, Cramlington,

UK). Antibody binding was detected using an enhanced chemi-

luminescence HRP substrate detection kit (Millipore, Watford,

UK). Imaging and band quantification were carried out using a

ChemiGenius Bioimaging Gel Doc System (Syngene, Cambridge,

UK).

AMPK activity assay
Approximately 50 mg of GTN muscle was suspended in 250 ml

homogenization buffer (50 mm Tris/HCl, 0.25 m mannitol,

50 mm NaF, 5 mm sodium pyrophosphate, 150 mm NaCl,

5 mgml21 soybean trypsin inhibitor, 1 mm DTT, 0.1 mm PMSF,

1% (v/v) Triton X-100) and homogenized using a hand-held

polytron. The samples were left to rotate at 4uC for 30 mins and

then cell debris was pelleted by centrifugation at 17,600 g for

5 min. The supernatants were removed and protein concentration

determined. Sheep anti-AMPK a1 or a2 antibodies (5 mg) were

used to immunoprecipitate AMPK from 200 mg of muscle lysate

for 2 h at 4uC. The immunoprecipitates were washed in

homogenization buffer and then resuspended in assay buffer

(50 mm Hepes, 1 mm DTT, 0.02% (v/v) Brij-35). AMP, [322c
P]-ATP (200 cpm pmol21) and the peptide substrate (AMAR-

AASAAALARRR) were added to the immunoprecipitate at a final

concentration of 200 mm. The assays were carried out for 15 min

at 30uC and terminated by applying 30 ml of the reaction mixture

to P81 papers (Whatman; Maidstone, UK). ATP incorporation

into the peptide substrate was inhibited by placing the filter paper

in 1% orthophosphoric acid. Phosphate incorporation into the

peptide was measured as previously described [20].

Molecular Adaptation to Low Glycogen Exercise
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Nuclear protein isolation
Nuclear and cytosolic fractions were isolated as previously

described [21]. Briefly, 50 mg GTN muscle was homogenized

using a commercially available kit (78835: NE-PER; Thermo

Scientific) according to the manufacturers instructions, with the

addition of the complete protease inhibitor mixture (11697498001;

Roche Applied Science). Integrity of nuclear fractions was

confirmed by immunoblotting for the cytosolic enzyme, lactate

dehydrogenase (LDH, L7016; Sigma) and the nuclear protein,

histone H2B (ab9408; AbCam).

Chromatin Immunoprecipitation (ChIP) assay
Chromatin immunoprecipitation experiments were performed

using a commercially available kit according to the manufacturer’s

instructions (Millipore, CA, USA, Cat: 17–295). Briefly, 200 mg of

powdered GTN muscle was rotated end-over-end for 10 mins in

10 ml ice-cold 1% high-grade formaldehyde/PBS. Muscle sam-

ples were homogenized in 250 mL SDS lysis buffer using a hand-

held homogenizer (Pro 200, PRO scientific INC, USA). DNA was

sheared using a hand-held sonicator on ice and the resulting

DNA/protein complexes immunoprecipitated overnight using a

mouse monocolonal PPAR-h antibody (R&D Systems INC, Cat:

PP-K9436-10) or a goat anti-mouse IgG as control (Thermo

Scientific, Cat: 31430). The following day, samples were reversed

crosslinked and DNA extracted. To determine PPAR-h binding to

the CPT1 promoter, primers were designed to flank a 285 bp

region of the CPT1 promoter. The primers used were (FWD 59-

CTGGAGAGGAATGGGACAAC-39) and (REV 59-

ATTGGGGTGGAGAAAACAGA-39) with the RT-qPCR cycle

consisting of an initial 95uC for 5 min, followed by 50 cycles of

95uC for 15 s, 56uC for 15 s and 72uC for 30 s.

Expression plasmids and reporter systems
The 4xACO plasmid was previously described by He and

colleagues [22] and was purchased from Addgene (16533). Briefly

this plasmid contains 4 copies of the prototypic PPAR-responsive

element (PRE) taken from the acyl-CoA oxidase (ACO) gene

promoter, which contains two copies of the core binding sequence

AGGTCA separated by one base pair. The pCMX-PPARb/h
expression vector was generously provided by Professor Dan

Kelly, Sandford-Burnham Medical Research Institute, Lake

Nona, USA and has been described in full [23]. The Renilla

luciferase expression vector (RLuc) was purchased from Promega

(Madison, WI).

C2C12 transient cell transfections
C2C12 myoblasts were obtained from the ATCC. Transient

transfection of PPAR-h, ACO, and RLuc were performed on sub-

confluent C2C12 myoblasts using lipofectamine 2000 reagent

(Invitrogen, Carlsbad, CA) as previously described [24]. 16105

cells were seeded on 6-well plates. The next day, myoblasts were

transfected with 0.25 mg PPARd, 2.00 mg ACO, and 0.50 mg

RLuc, complexed with lipofectamine in 500 ml OptiMEM

transfection media (Invitrogen, Carlsbad, CA) and added to each

well. The next day, cells were washed twice with PBS and placed

in differentiation media (High glucose DMEM, 2% HS, 1% Pen/

strep).

Cell glycogen depletion and contraction
Following transfection, cells were maintained in growth media

for 24 h before shifting to differentiation media (DM; High glucose

DMEM, 2% HS, 1% Pen/strep). After four days, fully differen-

tiated myotubes were washed once with DPBS and transferred to

glucose free DMEM media (LG) or maintained in high glucose

DM. 24 hrs later, media was replenished for 3 or 6 hours and the

cells collected, or the cells were stimulated for 3 h (10 Hz, 0.4 s

contraction, 3.6 s delay) using a pulse width of 0.3 ms and pulse

amplitude of 40 V as previously described [24]. Following

treatment, the media was aspirated; the cells were rinsed in PBS,

and collected in 500 ml of passive lysis buffer (PLB; Madison, WI)

while rocking for 15 min. The lysates were centrifuged at 4uC for 3

minutes at 14,000 g to remove debris. The supernatant (20 ml) was

transferred to a 96-well plate and promoter activity was assayed

using the Dual Luciferase Reporter 1000 Assay System (Promega,

Figure 1. Schematic of the experimental design. Skeletal muscle glycogen content was manipulated using pre-exercise and varying periods of
recovery, prior to a main 45 min exercise trial. Five groups performed 3-days acclimatization to treadmill running. Following which, the CON group
was sacrificed 24 h after the final acclimatization trial, the normal glycogen control (NG-C) ran for 1 hour and then rested 23 h before sacrifice, the
normal glycogen exercise (NG-E) performed a subsequent 45 min run 23 h after the initial 1 hour run, the low glycogen control (LG-C) was collected
1 h after the initial 1 hour run, and the low glycogen exercise group (LG-E) was collected immediately following a 45 min run commenced 1 hour
after the initial 1 hour trial. All experiments took place in the morning to avoid significant alterations in diet and diurnal variation in metabolic
responses.
doi:10.1371/journal.pone.0077200.g001

Molecular Adaptation to Low Glycogen Exercise
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E1980). PPAR-h activity was determined by normalizing firefly

luciferase activity (ACO-luciferase) to renilla luciferase (SV40-

renilla). Absolute renilla was used to determine cell viability and

transfection efficiency and was not different between treatment

groups.

Statistical analysis
One-way analysis of variance ANOVA (BrightStat.com) and

Tukey honestly significant difference posthoc test were used to

determine differences in glycogen content, PPAR-h activity,

AMPKa1/a2 activity, protein localization and phosphorylation

between groups. Values are displayed as mean 6 SEM, with

statistical significance set at 0.05.

Results

Glycogen content
The exercise protocol successfully reduced GTN glycogen

content (Figure 2). As expected, the 23 h recovery period restored

glycogen in the NG-C group without super-compensation,

resulting in the NG groups conducting the second exercise bout

with glycogen concentration similar to the no exercise control

(CON) group (2.160.1 to 2.260.4 nmol.mg.wet wt). Following

the 40 min exercise bout, we observed a 48% reduction in the

NG-E group compared to NG-C (2.260.4 to 1.160.2 nmol.mg.-

wet wt). In contrast, the LG-C group had 40% less glycogen

content than the CON group (2.160.1 to 1.360.3 nmol.mg.wet

wt). At the end of the second exercise bout, the LG-E group had a

75% reduction in total glycogen compared to the CON group

(1.360.3 to 0.560.06 nmol.mg.wet wt).

AMPK a1 activity
AMPK a1 activity was not different between the CON, NG-C

(0.0460.002 to 0.460.001 Units mg/AMPK), or LG-C groups

(CON 0.0460.002 to LG-C 0.360.001 Units mg/AMPK;

Figure 3A). AMPK a1 activity tended to increase following

exercise in the NG-E group (CON 0.0460.002 to NG-E

0.0760.005 Units mg/AMPK) and the LG-E group (CON

0.0460.002 to LG-E 0.0560.006 Units mg/AMPK), but neither

reached statistical significance.

AMPK a2 activity
AMPK a2 activity was not different between the CON, NG-C

(0.0360.004 to 0.0360.003 Units mg/AMPK), or LG-C groups

(CON 0.0360.004 to LG-C 0.0260.001 Units mg/AMPK;

Figure 3B). AMPK a2 activity tended to increase (106%;

p = 0.127) following exercise in the NG-E group (CON

0.0360.002 to NG-E 0.0660.004 Units mg/AMPK). Given the

suppression in AMPK a2 activity in the LG-C group, the change

in AMPK a2 activity following the low glycogen exercise bout was

219% (LG-C 0.0260.001 to LG-C 0.0760.005 Units mg/

AMPK).

PGC-1a, AMPKa1 and AMPKa2 nuclear abundance
PGC-1a nuclear abundance increased in the LG-E group by

52% but was unchanged in any other group (Figure 4). In a similar

manner, AMPKa2 nuclear abundance increased in the LG-E

group by 95%, with no change in AMPKa2 nuclear abundance

was observed in any other group. In contrast to AMPKa2,

AMPKa1 nuclear translocation was not observed with exercise.

Skeletal muscle PPAR-h activity
PPAR-h activity, as assessed by PPAR-h binding to the CPT1

promoter (Figure 5), was observed to increase ,400% in the LG-E

group immediately after exercise, with no changes observed in any

of the other groups.

Figure 2. Glycogen levels in the 5 experimental groups.
Glycogen was determined after hydrolysis of 30 mg of muscle tissue.
Glycogen levels are expressed per mg of muscle. * indicates
significantly different than CON and { indicates significantly different
than NG-E and LG-C (p,0.05; n = 4).
doi:10.1371/journal.pone.0077200.g002

Figure 3. AMPK activity following exercise in a normal or low
glycogen environment. The activity of (A) a1-AMPK and (B) a2-AMPK
was determined in each of the 5 groups by IP kinase activity assay. *
indicates significantly different than control (p,0.05; n = 4).
doi:10.1371/journal.pone.0077200.g003

Molecular Adaptation to Low Glycogen Exercise
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Cell PPAR-h activity
In cell culture experiments, glycogen depletion increased

PPAR-h activity 76%, suggesting a direct effect of glycogen

content on PPAR-h activity (Figure 6). In agreement with this

hypothesis, glucose refeeding was characterized by a gradual

suppression of PPAR-h activity, returning to basal activity levels

after 6 hs. When contraction was initiated in a low glucose state,

PPAR-h activity increased 28%. In contrast, performing contrac-

tion in a normal glucose media resulted in a 13% suppression of

PPAR-h activity compared to basal control conditions.

Discussion

In the present study, we assessed the effect of muscle glycogen,

on post exercise signaling mechanisms that may regulate lipid

utilization in skeletal muscle. Importantly, to achieve this, we

manipulated glycogen levels via prior exercise, rather than

nutritional intervention. This is an important point, as this

approach allowed us to investigate the affects of glycogen depletion

and subsequent alteration in endogenous substrate availability,

rather than artificially manipulating substrate content, which may

have directly altered cellular signaling events. The validity of this

approach is seen in the fact that the LG-E group began exercise

with 52% of the glycogen of the CON group and by the end of

exercise displayed a 75% decrease in glycogen content. The

physiological reduction in muscle glycogen content that we report

here is similar to that reported in ex vivo models [25] and following

exercise in vivo [26]. With regard to the exercise protocol, it should

also be noted that we aimed to compare depleted vs replenished

glycogen content, rather than high vs low, as glycogen super-

compensation has previously been shown to alter substrate

Figure 4. Signaling in response to exercise in a normal or low glycogen environment. The localization (A) of a2-AMPK and PGC-1a was
determined following exercise in a normal or glycogen depleted state. Nuclear abundance of (B) a2-AMPK and (C) PGC-1a was determined relative to
histone H2B. * indicates significantly different than control (p,0.05; n = 4).
doi:10.1371/journal.pone.0077200.g004

Figure 5. PPAR-h activity in response to exercise in a normal or
low glycogen environment. Post-exercise skeletal muscle activity of
PPAR-h was determined by chromatin immunoprecipitation (ChIP)
assay followed by qRT-PCR using primers spanning the PPAR-h binding
region in the CPT-1 promoter. * indicates significantly different than
control (p,0.05; n = 4).
doi:10.1371/journal.pone.0077200.g005

Molecular Adaptation to Low Glycogen Exercise
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metabolism and intracellular signaling during and following acute

exercise [26].

The principal finding of the present study was the observation

that PPAR-h transcriptional activity is sensitive to the combined

effect of skeletal muscle contraction and glycogen depletion. We

observed an increase in PPAR-h binding to the CPT-1 promoter

when running exercise was conducted in a glycogen-depleted state

(LG-E). Further, to support our skeletal muscle observations, we

present cell-based evidence that PPAR-h activity is directly

sensitive to glucose availability and glycogen content, and restoring

glucose availability suppresses PPAR-h. Collectively, this data has

important implications for the adaptive response of skeletal muscle

to endurance-type exercise.

Unlike other, more characterized PPAR family members

(PPAR-c and PPAR-a), there is limited information regarding

the role of PPAR-h in skeletal muscle metabolic regulation. PPAR-

h is the most abundant PPAR in skeletal muscle and has been

shown to be enriched in oxidative type I fibers [27]. Given the

association of PPAR-h expression with skeletal muscle oxidative

capacity, it is not surprising that both acute [28,29] and chronic

[30,31] exercise increases PPAR-h mRNA in both rodent and

human skeletal muscle. These observations have therefore led to

the suggestion that PPAR-h activity is under the control of an

exercise-derived factor [3,11], however the precise mechanism for

PPAR-h induction during muscle contraction remains unknown.

One possible mechanism by which exercise may trigger PPAR-h
activation is via the liberation of FFAs, which are PPAR ligands,

from adipose and intramuscular stores. Indeed, Fyffe and

colleagues recently demonstrated that long-chain FFA [C16:0,

C16:1, C18:0 and C18:1] were able to occupy a recombinant

PPAR-h protein ligand binding domain in a ratio of 3:2:1:4, with

ligand binding thought to stabilize the protein in an active state

[32]. Given that endogenous FFA of similar chain length

(palmitate [C16]; palmitoleate [C16:1]; and oleate [C18:1]) have

been shown to have diverse physiological functions in skeletal

muscle [5], determining whether such FFA, or species derived

from these FFA are the endogenous PPAR-h ligand is a key future

question to be addressed.

One interesting caveat with regard to FFA as an in vivo ligand

for PPAR-h during exercise is the recent study by Watt and

colleagues, which demonstrated that treatment with the anti-

lipolytic drug nicotinic acid (causing a reduction in FFA

availability) actually increased PPAR-h mRNA expression follow-

ing acute exercise [29]. Further, treatment of C2C12 myotubes

with long-chain FFA failed to increase PPAR-h expression [33].

Thus, it seems that we are still some way from understanding the

endogenous ligand for PPAR-h in skeletal muscle. Given the

disparity between the activity of PPAR-h target genes and PPAR-h
gene expression, it may also be that the activity of PPAR-h (i.e.

cellular location and binding of PPAR-h to target gene promoters),

rather than increased protein or mRNA abundance is the

important physiological event regarding PPAR-h activity. To

support this hypothesis, the data herein provides the first evidence

that contraction in a glycogen depleted state increases PPAR-h
activity in skeletal muscle.

Given our observation that glycogen depletion was not sufficient

to increase PPAR-h activity in vivo, it would appear that a

contraction-derived signal is required to activate PPAR-h. Little is

known regarding modes of post-translational regulation of PPAR-

h activity. However, phosphorylation has been reported as a mode

of regulation for both PPAR-c and PPAR-a [34]. Exercise in a

glycogen-depleted state is known to result in increased activation

of a host of cell energy sensing kinases [3], all implicated in

mitochondrial adaptation to exercise. Consistent with previous

research, we observed increased AMPK a2 activity and nuclear

abundance following exercise in the LG-E group. These findings

are in agreement with data in both rodents [25] and humans

[26,35], suggesting that contraction mediated activation and

relocalization of AMPK is sensitive to skeletal muscle glycogen

content. Overlap in function between AMPK and PPAR-h has

been reported by Kramer and colleagues who demonstrated that

the PPAR-h agonist GW501516 (GW) increases the activity of

both AMPK and PPAR-h in human primary myotubes [36]. In

contrast, in vivo GW does not activate AMPK and only marginally

increases target gene expression [37]. When GW treatment is

combined with the AMPK activator AICAR, target gene

expression increases 2-3-fold more than with GW alone [37].

This notion is also supported by the recent work by Gan and

coworkers who demonstrated that PPAR-h, but not PPAR-a,

interacted with AMPK to synergistically increase lactate dehydro-

genase (LDH) gene transcription [38]. Collectively this data

suggests that AMPK and PPAR-h may function together to

increase the expression of enzymes important in fatty acid

oxidation. Further, our data suggest that low glycogen drives

AMPK into the nucleus possibly as a result of less direct binding of

AMPK to glycogen. However, the exact mechanism and the

regulatory steps involved remain to be determined.

Figure 6. PPAR-h activity in response to decreased glucose
availability and electrical stimulation. The in vitro activity of PPAR-
h was determined by measuring 4xACO-luciferase expression following
(A) glycogen depletion and repletion, or (B) electrical stimulation in a
glucose depleted or glucose rich environment. * indicates significantly
different than control (p,0.05; n = 6 three independent replicates).
doi:10.1371/journal.pone.0077200.g006
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To confirm the effects of glycogen depletion on PPAR-h
activity, we used an in vitro system to determine the effects of

removing glucose from the medium followed by glucose refeeding

or electrical stimulation (contraction). In accordance with our in

vivo finding, PPAR-h was activated by removal of glucose and

inactivated 6 hours after glucose has been added back to the

medium. Extending these findings, we show that contraction

further increases PPAR-h activity in a low glucose environment,

whereas in a high glucose environment contraction decreased

PPAR-h activity. This finding is strikingly similar to b-HAD levels

in trained humans following 3 weeks of training in either a high or

low glycogen state [8], suggesting that PPAR-h activity may

underlie some of the beneficial effects of low glycogen exercise on

fatty acid metabolism.

Another novel finding of the present study was the observation

that PGC-1a nuclear translocation only occurred in the LG-E

group. Terada and Tabata were the first to observe an increase in

skeletal muscle PGC-1a nuclear abundance following exercise

[39]. Complimentary studies from the same group also showed a

clear association between exercise duration/intensity, the magni-

tude of glycogen depletion, and the amount of PGC-1a nuclear

induction in exercised rat skeletal muscle [40]. Subsequent

research has shown that the nuclear import of PGC-1a appears

to be an initiator of the mitochondrial biogenetic program [41],

and that this process also occurs in humans following acute

endurance [42] and high intensity [43] exercise. However, even

though an increase in skeletal muscle nuclear PGC-1a following

exercise is generally accepted, little is known mechanistically about

the regulation of this process. Future research should focus on

identification of the factors involved in PGC-1a nuclear translo-

cation following exercise.

The present study demonstrates the sensitivity of cellular

signaling to glycogen content. However, important limitations in

the study design should be acknowledged. We were careful to

manipulate glycogen content via exercise, and not nutrition. In

doing so, the LG-E group therefore had successive bouts of

exercise compared to the N-GE group who had a significant rest

period. To minimize the effect of the rest period, we added two

additional control groups (NG-C and LG-C) so that we could

understand cellular signaling prior to the second bout of exercise.

Nevertheless, there remains the possibility that the successive bout

of exercise in the LG-E group may have produced a greater

exercise stimulus, which may have contributed to the exercise

adaptation we observed. However, until a genetic or pharmaco-

logical method is developed to specifically manipulate glycogen

content independent of diet or exercise, these study limitations will

remain.

Conclusion

In conclusion, we report for the first time that exercise and

glycogen regulate the activity of PPAR-h in skeletal muscle.

During exercise in a glycogen-depleted state we observed

increased binding of PPAR-h to the CPT1 promoter, indicative

of increased transcriptional activation of PPAR-h. Further, we also

report that PPAR-h activity in vitro is sensitive to glucose

availability and glycogen content. In addition, we report that the

nuclear translocation of AMPK and PGC-1a is sensitive to

glycogen content. This observation has important implications for

mitochondrial adaption to exercise and provides a potential

mechanism for elevated FFA oxidation in glycogen depleted

skeletal muscle. These observations could potentially underlie the

improved performance seen in recreational [7,8] and elite [44]

athletes who incorporate low glycogen training into their

preparation for long distance events. Further research should

aim at determining the cellular cues by which glycogen depletion

increases PGC-1a/AMPK/PPAR-h activity and the implications

for this with regard to skeletal muscle adaptation following

exercise.
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