747 research outputs found

    Towards a high-precision measurement of the antiproton magnetic moment

    Full text link
    The recent observation of single spins flips with a single proton in a Penning trap opens the way to measure the proton magnetic moment with high precision. Based on this success, which has been achieved with our apparatus at the University of Mainz, we demonstrated recently the first application of the so called double Penning-trap method with a single proton. This is a major step towards a measurement of the proton magnetic moment with ppb precision. To apply this method to a single trapped antiproton our collaboration is currently setting up a companion experiment at the antiproton decelerator of CERN. This effort is recognized as the Baryon Antibaryon Symmetry Experiment (BASE). A comparison of both magnetic moment values will provide a stringent test of CPT invariance with baryons.Comment: Submitted to LEAP 2013 conference proceeding

    The half-life of 221^{221}Fr in Si and Au at 4K and at mK temperatures

    Full text link
    The half-life of the α\alpha decaying nucleus 221^{221}Fr was determined in different environments, i.e. embedded in Si at 4 K, and embedded in Au at 4 K and about 20 mK. No differences in half-life for these different conditions were observed within 0.1%. Furthermore, we quote a new value for the absolute half-life of 221^{221}Fr of t1/2_{1/2} = 286.1(10) s, which is of comparable precision to the most precise value available in literature

    Precision measurements of the 60^{60}Co ÎČ\beta-asymmetry parameter in search for tensor currents in weak interactions

    Full text link
    The ÎČ\beta-asymmetry parameter A~\widetilde{A} for the Gamow-Teller decay of 60^{60}Co was measured by polarizing the radioactive nuclei with the brute force low-temperature nuclear-orientation method. The 60^{60}Co activity was cooled down to milliKelvin temperatures in a 3^3He-4^4He dilution refrigerator in an external 13 T magnetic field. The ÎČ\beta particles were observed by a 500 ÎŒm{\mu}m thick Si PIN diode operating at a temperature of about 10 K in a magnetic field of 0.6 T. Extensive GEANT4 Monte-Carlo simulations were performed to gain control over the systematic effects. Our result, A~=−1.014(12)stat(16)syst\widetilde{A} = -1.014(12)_{stat}(16)_{syst}, is in agreement with the Standard-Model value of −0.987(9)-0.987(9), which includes recoil-order corrections that were addressed for the first time for this isotope. Further, it enables limits to be placed on possible tensor-type charged weak currents as well as other physics beyond the Standard Model
    • 

    corecore