1,743 research outputs found

    Jets as diagnostics of the circumstellar medium and the explosion energetics of supernovae: the case of Cas A

    Full text link
    We present hydrodynamical models for the Cassiopeia A (Cas A) supernova remnant and its observed jet / counter-jet system. We include the evolution of the progenitor's circumstellar medium, which is shaped by a slow red supergiant wind that is followed by a fast Wolf-Rayet (WR) wind. The main parameters of the simulations are the duration of the WR phase and the jet energy. We find that the jet is destroyed if the WR phase is sufficiently long and a massive circumstellar shell has formed. We therefore conclude that the WR phase must have been short (a few thousand yr), if present at all. Since the actual jet length of Cas A is not known we derive a lower limit for the jet energy, which is ~10^{48} erg. We discuss the implications for the progenitor of Cas A and the nature of its explosion.Comment: 9 pages, 5 figures, ApJ accepted. Version with high resolution figures available at http://www.phys.uu.nl/~schure/CasA_jet.pd

    Photodissociation in proto-planetary nebulae. Hydrodynamical simulations and solutions for low-velocity multi-lobes

    Full text link
    We explore the effects of photodissociation at the stages of post-asymptotic giant branch stars to find a mechanism able to produce multi-polar shapes. We perform two-dimensional gasdynamical simulations to model the effects of photodissociation in proto-planetary nebulae. We find that post-asymptotic giant branch stars with 7,000 K or hotter are able to photodissociate a large amount of the circumstellar gas. We compute several solutions for nebulae with low-velocity multi-lobes. We find that the early expansion of a dissociation front is crucial to understand the number of lobes in proto-planetary nebulae. A dynamical instability appears when cooling is included in the swept-up molecular shell. This instability is similar to the one found in photoionization fronts, and it is associated with the thin-shell Vishniac instability. The dissociation front exacerbates the growth of the thin-shell instability, creating a fast fragmentation in shells expanding into media with power-law density distributions such as r^-2.Comment: 4 pages, 2 figures, acepted by A&A Letter

    Turbulent drag reduction by anisotropic permeable substrates-analysis and direct numerical simulations

    Get PDF
    We explore the ability of anisotropic permeable substrates to reduce turbulent skin-friction, studying the influence that these substrates have on the overlying turbulence. For this, we perform DNSs of channel flows bounded by permeable substrates. The results confirm theoretical predictions, and the resulting drag curves are similar to those of riblets. For small permeabilities, the drag reduction is proportional to the difference between the streamwise and spanwise permeabilities. This linear regime breaks down for a critical value of the wall-normal permeability, beyond which the performance begins to degrade. We observe that the degradation is associated with the appearance of spanwise-coherent structures, attributed to a Kelvin-Helmholtz-like instability of the mean flow. This feature is common to a variety of obstructed flows, and linear stability analysis can be used to predict it. For large permeabilities, these structures become prevalent in the flow, outweighing the drag-reducing effect of slip and eventually leading to an increase of drag. For the substrate configurations considered, the largest drag reduction observed is 2025%\approx 20-25\% at a friction Reynolds number δ+=180\delta^+ = 180

    Optimal design of an LCC-S WPT3 Z1 SAE J2954 compliant system, using NSGA-II with nested genetic algorithms for simultaneous local optimization

    Get PDF
    Wireless Power Transfer (WPT) for electric vehicles is one of the most promising methods that, given its advantages, will drive the deployment of electric vehicles. This paper presents a mathematical optimization method applied to the complete design of an LCC-S WPT3 Z1 11 kW system that complies with the SAE J2954 standard (Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology, 2020). A design method based on three phases is proposed, allowing the complete inductor system, including ferrites shielding and compensation circuit components, to function in any relative primary and secondary position. In Phase 1, a multi-objective NSGA-II algorithm is designed, utilizing three nested genetic algorithms. The goal is simultaneously searching for the local optimum between the primary and secondary systems in three positions. This is achieved by modeling the circuit’s electrical and electromagnetic parameters with equations, enabling an iterative process with reduced computational time. The NSGA-II algorithm yields three scenarios: primary copper volume minimization, secondary copper volume minimization, and a compromise solution that optimizes the total volume. The result is then modeled in Phase 2 using a 3D finite element program that includes ferrite and optimal shielding, obtaining the values of inductances and mutual inductance in the three positions, as well as design data for manufacturing. This result is introduced in Phase 3 to optimize compensation circuit components using a second NSGA-II algorithm with three nested genetic algorithms. Again, three scenarios are obtained based on the desired system behavior and the optimal cost of the components. The result is validated through simulation with Matlab-Simulink and experimentally using a prototype constructed for this purpose

    Optimal design of a Low-Cost SAE JA2954 compliant WPT system using NSGA-II

    Get PDF
    Wireless Power Transfer (WPT) systems for electric vehicle charging are one of the most promising methods that, given the advantages they bring, will help the desired deployment of electric vehicles. This paper presents a mathematical optimisation method applied to the design of an 11 kW S-S system that complies with the SAE J2954 standard. A proposal is made to calculate the electrical parameters of the circuit based on equations that are compared with the results obtained by simulation with finite elements and experimental measurements, achieving very tight results with a reduced computational time. The NSGA-II multi-objective genetic algorithm is then applied together with the secant method, defining three different scenarios: minimisation of the primary copper volume, minimisation of the secondary copper volume and a compromise solution optimising the total primary and secondary copper volume. The result is a set of Pareto optimal solutions, from which the one that meets the standard can be extracted that suits the designer’s needs

    Morpho-kinematic analysis of the point-symmetric, bipolar planetary nebulae Hb 5 and K 3-17, a pathway to poly-polarity

    Full text link
    The kinematics of the bipolar planetary nebulae Hb~5 and K 3-17 are investigated in detail by means of a comprehensive set of spatially resolved high spectral resolution, long-slit spectra. Both objects share particularly interesting characteristics, such as a complex filamentary, rosette-type nucleus, axial point-symmetry and very fast bipolar outflows. The kinematic information of Hb~5 is combined with {\it HST} imagery to construct a detailed 3D model of the nebula using the code SHAPE. The model shows that the large scale lobes are growing in a non-homologous way. The filamentary loops in the core are proven to actually be secondary lobes emerging from what appears to be a randomly punctured, dense, gaseous core and the material that forms the point symmetric structure flows within the lobes with a distinct kinematic pattern and its interaction with the lobes has had a shaping effect on them. Hb~5 and K~3-17 may represent a class of fast evolving planetary nebulae that will develop poly-polar characteristics once the nebular core evolves and expands.Comment: 19 pages, 8 figures. To appear in The Astrophysical Journa
    corecore