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Abstract

The relative wall-normal displacement of the origin perceived by different components of near-wall turbulence is

known to produce a change in drag. This effect is produced for instance by drag-reducing surfaces of small texture-

size like riblets and superhydrophobic surfaces. To facilitate the research on how these displacements alter near-wall

turbulence, this paper studies different strategies to model such displacement effect through manipulated boundary

conditions. Previous research has considered the effect of offsetting the virtual origins perceived by the tangential

components of the velocity from the reference, boundary plane, where the wall-normal velocity was set to zero. These

virtual origins are typically characterised by slip-length coefficients in Robin, slip-like boundary conditions. In this

paper, we extend this idea and explore several techniques to define and implement virtual origins for all three velocity

components on direct numerical simulations (DNSs) of channel flows, with special emphasis on the wall-normal

velocity. The aim of this work is to provide a suitable foundation to extend the existing understanding on how these

virtual origins affect the near-wall turbulence, and ultimately aid in the formulation of simplified models that capture

the effect of complex surfaces on the overlying flow and on drag, without the need to resolve fully the turbulence and

the surface texture. From the techniques tested, Robin boundary conditions for all three velocities are found to be the

most satisfactory method to impose virtual origins, relating the velocity components to their respective wall-normal

gradients linearly. Our results suggest that the effect of virtual origins on the flow, and hence the change in drag that

they produce, can be reduced to an offset between the virtual origin perceived by the mean flow and that perceived

by the overlying turbulence, and that turbulence remains otherwise smooth-wall-like, as proposed by Luchini (1996).

The origin for turbulence, however, would not be set by the spanwise virtual origin alone, but by a combination of the

spanwise and wall-normal origins. These observations suggest the need for an extension of Luchini’s virtual-origin

theory to predict the change in drag, accounting for the wall-normal transpiration when its effect is not negligible.

Keywords:

1. Introduction

Many passive turbulent drag reduction techniques

rely on the ability of small surface textures to manipu-

late the overlying near-wall cycle and change the skin

friction drag. Examples of such surfaces include ri-

blets (Walsh and Lindemann, 1984; Garcı́a-Mayoral and

Jiménez, 2011), superhydrophobic surfaces (Rothstein,

2010), or anisotropic permeable substrates (Gómez-de-

Segura and Garcı́a-Mayoral, 2019). Solving the flow

over these surfaces is computationally expensive, as the
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resolution required to resolve simultaneously the turbu-

lence dynamics and the detail of the texture can be pro-

hibitively high. It is therefore of interest to find sim-

plified models that capture the effect that such surfaces

produce on the overlying flow, with particular emphasis

on predicting surface drag.

It has previously been proposed that small textures

alter drag by offsetting the apparent origins –the wall-

normal location where the presence of a smooth wall is

perceived– experienced by the mean flow and the near-

wall turbulent structures, and that these ‘virtual’ ori-

gins are those perceived by the streamwise and spanwise

components of the velocity, respectively (Luchini et al.,

1991; Luchini, 1996). More recently, it has been sug-

gested that the virtual origin for turbulence was not de-
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termined solely by the origin perceived by the spanwise

velocity, but by an interplay between the latter and the

origin perceived by the wall-normal velocity (Fairhall

and Garcı́a-Mayoral, 2018). To provide the means to

investigate this phenomenon, the present paper aims to

investigate the suitability of different techniques to im-

pose virtual origins on the three velocity components

independently. The focus is on how the overlying flow

responds to these apparent origins, and not how any par-

ticular surface can produce this effect. We refer the

reader to the literature on homogenisation techniques

(Bottaro, 2019; Lācis et al., 2020) for details on how

consistent effective boundary conditions can be derived

for specific textures.

Garcı́a-Mayoral et al. (2019) have recently reviewed

the drag-altering effect of textured surfaces. When the

texture is small compared to the overlying turbulent

structures, its direct effect is confined to the immedi-

ate vicinity of the surface, while farther away from the

wall its effect is reflected merely in a shift of the ve-

locity profile, ∆U+ (Clauser, 1956). The superscript

‘+’ indicates scaling in viscous units, defined in terms

of the kinematic viscosity ν and the friction velocity

uτ =
√
τw, where τw is the kinematic shear stress at

the wall. The mean velocity in the logarithmic region

can then be expressed as U+ = 1/κ log y+ + B + ∆U+,

where y is the wall-normal coordinate, κ is the Kármán

constant and B is the smooth-wall logarithmic intercept.

Note that in this paper we take ∆U+ as positive when

the mean velocity U+ increases, contrary to roughness

literature, where it takes the opposite sign (Chung et al.,

2021). The shift ∆U+ can be used as an essentially

Reynolds-number-independent measure of the change

in drag (Garcı́a-Mayoral and Jiménez, 2011; Spalart

and McLean, 2011; Gatti and Quadrio, 2016; Garcı́a-

Mayoral et al., 2019). If ∆U+ > 0, the logarithmic re-

gion is shifted upwards and drag is reduced. Conversely,

if ∆U+ < 0, the logarithmic region is shifted downwards

and drag is increased.

The studies on how complex surfaces affect the over-

lying turbulent flow and create this shift ∆U+ date back

to the early 90s. The first studies were on riblets (Lu-

chini et al., 1991), but the same mechanism applies also

to other complex surfaces. When the surface texture

is small, the overlying flow does not perceive the de-

tail of the texture, but a homogenised effect of it, and

the velocity components may appear to vanish at differ-

ent heights. Taking the outermost plane of the surface

geometry as reference, y+ = 0, Luchini et al. (1991)

proposed that the change in drag depends on the off-

set between a streamwise and a spanwise ‘protrusion

heights’. Luchini (1996) suggested that these heights
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Figure 1: Sketch of the (a) streamwise and (b) spanwise slip lengths,

ℓ+x and ℓ+z , and the corresponding virtual origins at y+ = −ℓ+x and

y+ = −ℓ+z . A quasi-streamwise vortex (q-s vortex), inducing cross-

flow w+, is sketched in (b).

would correspond to the virtual, equivalent smooth wall

perceived by the mean flow, at y+ = −ℓ+x , and that

perceived by the turbulent fluctuations, particularly the

quasi-streamwise vortices of the near-wall cycle, and

that turbulence would remain otherwise as that over a

smooth wall. Given that near the surface the quasi-

streamwise vortices induce primarily a transverse shear

in the spanwise direction, Luchini (1996) proposed that

the virtual origin of turbulence is given by that of the

spanwise velocity, y+ = −ℓ+z . Drag reduction over ri-

blets, and by extension over any non-smooth surface

(Jiménez, 1994), could then be viewed as a virtual-

origin effect, as depicted in figure 1, such that

∆U+ ∝ ℓ+x − ℓ+z . (1)

If ℓ+z < ℓ
+
x , the surface texture would impede the

penetration of turbulence as deep as the mean flow,

and quasi-streamwise vortices would be comparatively

‘pushed’ upwards, away from the origin for the mean

flow, y+ = −ℓ+x . As a result, the local turbulence mix-

ing close to the surface would decrease, thereby reduc-

ing the shear and the skin friction (Orlandi and Jiménez,

1994). Conversely, if ℓ+x < ℓ
+
z , the vortices would per-

ceive a deeper origin than the mean flow and friction

drag would increase. This suggests that the effect of

complex surfaces can be characterised by streamwise

and spanwise Robin slip conditions at a reference plane

y = 0, as portrayed in figure 1,
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where the lengths ℓ+x and ℓ+z would characterise the vir-

tual origins for the streamwise and spanwise velocities,

u+ and w+. These lengths are also called ‘slip lengths’

in the superhydrophobic community, as well as ‘protru-

sion heights’ in the riblet community.
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Figure 2: Schematic of the spanwise and wall-normal velocities in-

duced by quasi-streamwise vortices at the reference plane for (a) vir-

tual origins . 1 wall unit and (b) larger virtual origins. The velocity

at the reference plane has a spanwise (horizontal arrow) and a wall-

normal (vertical arrow) component.

Although not the focus of this paper, equations (2a)-

(2b) are also the result of a first order expansion when

applying homogenisation on a given texture, and have

been as such profusely studied (Philip, 1972; Lauga

and Stone, 2003; Kamrin et al., 2010; Luchini, 2013).

The expansion is typically done for the small parameter

given by the ratio of the texture size to the flow thick-

ness. In turbulent flows, it can be tempting to expand on

the same parameter, but this does not produce satisfac-

tory results. This is because the limiting parameter here

is the ratio of the sizes of the texture and the near-wall

eddies. Taking the quasi-streamwise vortices, they have

diameters φ+ ≈ 15 and are centred at a height y+ ≈ 15

above a smooth surface (Robinson, 1991; Schoppa and

Hussain, 2002). In most applications of interest, this

limiting parameter is then at least of order one, and

smaller textures are typically considered hydraulically

smooth (Jiménez, 2004). Higher order expansions are

currently being investigated to circumvent this problem

(Lācis et al., 2020; Bottaro, 2019; Bottaro and Naqvi,

2020).

The inherent assumption in the theory of Luchini

(1996), given by equation (1), and the resulting slip

boundary conditions (2), is that the quasi-streamwise

vortices, which perceive a virtual smooth wall at

y+ = −ℓ+z , induce a spanwise velocity at the reference

plane y+ = 0, but zero wall-normal velocity. For

ℓ+z . 1, the wall-normal velocity induced at the refer-

ence plane would be negligible and the displacement of

the vortices could indeed be effectively represented by

the boundary condition (2b) plus zero v transpiration,

as sketched in figure 2(a). However, as ℓ+z becomes

comparable to the typical vortex diameter and vortex-

wall distance, which as mentioned in the previous para-

graph are roughly 15 wall units, the wall-normal ve-

locity that the vortices would induce at the reference

plane would no longer be negligible, as sketched in fig-

Figure 3: Channel flow with appropriate boundary conditions at the

reference plane, y = 0, so that the flow perceives the wall at the virtual

wall, y = −ℓ. The flow field at the reference plane corresponds to an

instantaneous realisation of the streamwise velocity for case DHV444

in table 1.

ure 2(b). Impeding v at this plane would then restrict

the displacement of the vortices. This effect can, for

instance, be observed in the exhaustive set of slip-only

simulations of Busse and Sandham (2012), for which

Fairhall and Garcı́a-Mayoral (2018) proposed an em-

pirical expression to characterise the influence of im-

permeability. Gómez-de-Segura et al. (2018) suggested

that some form of transpiration at y+ = 0 would also

need to exist for the quasi-streamwise vortices to per-

ceive the origin at y+ = −ℓ+z . When the condition on

transpiration is effectively v ≈ 0, as in the context of

superhydrophobic surfaces (Min and Kim, 2004; Fuka-

gata et al., 2006; Busse and Sandham, 2012), the origin

the quasi-streamwise vortices would perceive would not

be as deep as y+ = −ℓ+z .

As mentioned before, in this work we explore the

capability of different types of boundary conditions to

impose virtual origins on DNSs of channel flows. The

ultimate aim is to be able to set virtual origins for the

three velocities independently, but as a first step we ex-

plore imposing the presence of a virtual smooth wall at

y+ = −ℓ+, equal for all three velocities, as represented in

figure 3. This will allow us to validate the models, as we

can compare the flow with that in a smooth channel with

the wall at y+ = −ℓ+. For instance, the mean velocity

profile and all turbulence statistics should be smooth-

wall-like, except shifted in y+ by ℓ+. Once we identify

a suitable technique, we will use it to impose different

virtual origins for the different velocity components.

The paper is organised as follows. In section 2 we

briefly describe the numerical method used. Section 3

presents and discusses the results from our simulations,

exploring different techniques to impose virtual origins

in section 3.1, and demonstrating the ability of the most

suitable technique studied to impose different virtual
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origins on the three velocities in section 3.2. Conclu-

sions are presented in section 4.

2. Numerical method

We conduct DNSs of symmetric channels with non-

zero boundary conditions at both the bottom and top

boundaries. The simulations conducted and their nu-

merical parameters are summarised in tables 1 and 2.

The code used is adapted from Gómez-de-Segura and

Garcı́a-Mayoral (2019) and is only briefly summarised

here. It solves the incompressible Navier-Stokes equa-

tions for the velocity u = (u, v,w) and the kinematic

pressure p. The channels are periodic in x and z, and

their size is the standard 2π × π × 2δ in the streamwise,

spanwise and wall-normal directions, respectively, with

the half-channel height δ = 1 measured from the refer-

ence plane y = 0. This domain size has been shown

to be adequate to capture one-point statistics up to

the channel height for the friction Reynolds numbers

used in the present study, as well as the flow dynamics

that characterise the near-wall and log regions (Lozano-

Durán and Jiménez, 2014). The spatial discretisation is

spectral in x and z and second-order centred finite dif-

ferences in y. Simulations are conducted at constant

pressure gradient, starting from a smooth-wall flow at

friction Reynolds number Reτ = uτδ/ν ≃ 180. The

grid has 192 × 192 × 153 collocation points with grid

stretching in y, resulting in a resolution of ∆x+ ≈ 5.9,

∆z+ ≈ 2.9, and ∆y+ ≈ 0.3 near the wall stretching to

∆y+ ≈ 3 in the centre of the channel. The temporal inte-

gration uses the Runge-Kutta, fractional-step method of

Le and Moin (1991). The boundary conditions are listed

in table 1 and discussed in the next section. The cou-

pling between velocity components, their wall-normal

gradients and the pressure is fully implicit and embed-

ded in the LU factorisation, intrinsic in the fractional-

step method (Perot, 1993). A detailed description of

the implementation of this type of boundary conditions

can be found in Gómez-de-Segura and Garcı́a-Mayoral

(2019) and Gómez-de-Segura (2019).

3. Results and discussion

Hereafter, we label the depth of the virtual origin per-

ceived by the mean flow as ℓ+
U

and that perceived by

turbulence as ℓ+
T

. These will be measured a posteri-

ori in the DNS results. The depth ℓ+
U

is given by the

wall-normal displacement of the mean velocity profile

with respect to a smooth-wall flow and, given that in

viscous units dU+/dy+|y+=0 ≈ 1, is essentially equal to

the mean slip velocity, ℓ+
U
≈ U+

slip
. The depth ℓ+

T
, in

contrast, will be estimated from the displacement of the

Reynolds stress curve or that of the streamwise vorticity,

ω′+x . We will see later that these are essentially equal.

Given that the local maximum in ω′+x near the wall is a

good proxy for the location of the quasi-streamwise vor-

tices (Choi et al., 1994), this supports the hypothesis of

Luchini (1996) that the origin perceived by the vortices

is also that perceived by turbulence.

3.1. Modelling the presence of a smooth wall at y+ =

−ℓ+

We begin by considering boundary conditions to

model the presence of a smooth wall at y+ = −ℓ+. Such

off-wall conditions have been considered, for instance,

in Mizuno and Jiménez (2013) and Encinar et al. (2014)

in the context of log-layer dynamics. Here we consider

four cases, ℓ+ = 1, 2, 3 and 4.

3.1.1. Fully coupled boundary conditions from a

Stokes-flow model

For small ℓ+, such that the modelled region falls

within the viscous sublayer, i.e. ℓ+ ≤ 5, the flow be-

tween the simulation boundary, y+ = 0, and the virtual

wall, y+ = −ℓ+, can be assumed to be dominantly vis-

cous and can be modelled as a Stokes flow,

−∇p + ν∇2
u = 0. (3)

We solve this equation analytically to yield the off-wall

conditions at y+ = 0 for the DNSs. For that, equation (3)

is expanded using Fourier series in the wall-parallel di-

rections, x and z, and we consider the response of the

modelled fluid region, y+ ∈ [−ℓ+, 0], to the overlying

interfacial shear and pressure waves in spectral space.

This yields the following conditions at the reference

plane y+ = 0,

û|+y+=0 = C
+
uu

dû

dy

∣

∣

∣

∣

∣

+

y+=0

+ C+uw

dŵ

dy

∣

∣

∣

∣

∣

+

y+=0

+ C+up p̂
∣

∣

∣

+

y+=0
, (4a)

ŵ|+y+=0 = C
+
wu

dû

dy

∣

∣

∣

∣

∣

+

y+=0

+ C+ww

dŵ

dy

∣

∣

∣

∣

∣

+

y+=0

+ C+wp p̂
∣

∣

∣

+

y+=0
,

(4b)

v̂|+y+=0 = C
+
vu

dû

dy

∣

∣

∣

∣

∣

+

y+=0

+ C+vw

dŵ

dy

∣

∣

∣

∣

∣

+

y+=0

+ C+vp p̂
∣

∣

∣

+

y+=0
, (4c)

where the constants C+
i j

are complex and depend on the

virtual origin ℓ+, as well as on the streamwise and span-

wise wavelengths, λ+x and λ+z . The expressions for the

upper wall (i.e. y+ = 2δ+) can be obtained by symme-

try, and together they provide off-wall conditions for the
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Case û+|y+=0 = ŵ+|y+=0 = v̂+|y+=0 = Reτ

FP222 eq. (4a), f (αx, αz) eq. (4b), f (αx, αz) eq. (4c), f (αx, αz) 183

DIP222 C+uu (αx, αz)
dû
dy

+ C+ww (αx, αz)
dŵ
dy

+ C+vp (αx, αz) p̂+ 183

DHP222 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+ C+vp (αx, αz) p̂+ 183

DHV222 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+
ℓ+y

dv̂
dy

+
182

DHV220 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+
0 182

FP333 eq. (4a), f (αx, αz) eq. (4b), f (αx, αz) eq. (4c), f (αx, αz) 184

DIP333 C+uu (αx, αz)
dû
dy

+ C+ww (αx, αz)
dŵ
dy

+ C+vp (αx, αz) p̂+ 185

DHP333 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+ C+vp (αx, αz) p̂+ 184

DHV333 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+
ℓ+y

dv̂
dy

+
183

DHV330 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+
0 182

FP444 eq. (4a), f (αx, αz) eq. (4b), f (αx, αz) eq. (4c), f (αx, αz) 186

DHP444 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+ C+vp (αx, αz) p̂+ 185

DHV444 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+
ℓ+y

dv̂
dy

+
184

DHV440 ℓ+x
dû
dy

+
ℓ+z

dŵ
dy

+
0 182

Table 1: Boundary conditions for the three velocity components for each case simulated, where Reτ is the friction Reynolds number measured

either at the virtual wall, y+ = −ℓ+, when the three virtual origins are equal, or at the origin of turbulence, y+ = −ℓ+
T

, otherwise. Each case is

labelled with 2 or 3 letters followed by 3 digits. The letters refer to the equations used as boundary conditions and the numbers correspond to the

desired values for the virtual origins for u, w and v, respectively. For the first letter, F(ull) means that the full Stokes conditions from equation (4)

are used, and D(iagonal) means that only the three dominant terms, Cuu, Cww and Cvp are used. The second letter denotes the type of boundary

condition used for u and w: I(nhomogeneous) when wavelength-dependent coefficients from Stokes equation are considered, and H(omogeneous)

when homogeneous slip lengths are considered. The last letter denotes the type of boundary condition used for v: P when an impedance between v

and p is imposed, derived from Stokes model, and V when v = ℓy dv/dy is used instead.

ℓ+u ℓ+w ℓ+v ℓ+x ℓ+z ℓ+y ℓ+sm ℓ+
U

ℓ+
T

ℓ+
T,pred

FP222 2.0 2.0 2.0 − − − − 2.0 2.1 −
DIP222 2.0 2.0 2.0 − − − − 2.0 1.5 −
DHP222 2.0 2.0 (1.7) 2.0 2.0 2.0 − − 2.0 1.5 −
DHV222 2.0 2.0 (1.7) 2.0 2.0 2.0 1.2 0.8 2.0 1.7 1.7

DHV220 2.0 2.0 (1.7) 0.0 2.0 2.0 0.0 0.0 2.0 1.3 1.3

FP333 3.0 3.0 3.0 − − − − 3.0 ∗ ∗
DIP333 3.0 3.0 3.0 − − − − 3.0 ∗ ∗
DHP333 3.0 3.0 (2.3) 3.0 3.0 3.0 − − 3.0 ∗ ∗
DHV333 3.0 3.0 (2.3) 3.0 3.0 3.0 1.9 1.1 3.0 2.4 2.3

DHV330 3.0 3.0 (2.3) 0.0 3.0 3.0 0.0 0.0 3.0 1.7 1.6

FP444 4.0 4.0 4.0 − − − − 4.0 ∗ ∗
DHP444 4.0 4.0 (2.9) 4.0 4.0 4.0 − − 3.6 ∗ ∗
DHV444 4.0 4.0 (2.9) 4.0 4.0 4.0 2.5 1.5 4.0 3.1 2.9

DHV440 4.0 4.0 (2.9) 0.0 4.0 4.0 0.0 0.0 4.0 1.9 1.8

Table 2: Values of slip lengths and depths of virtual origins. Parameters specified a priori: the depths of virtual origins for the three velocities

(ℓ+u , ℓ+w and ℓ+v ), the slip lengths (ℓ+x , ℓ+z and ℓ+y ), and ℓ+sm, as defined in figure 9(b). For certain simulations we do not define any slip lengths, as a

wavelength-dependent model is used instead. The values between parentheses for ℓ+w correspond to the actual virtual origins that we impose when

accounting for the curvature of w′+. Parameters specified a posteriori: depth of the virtual origin for the mean flow, ℓ+
U

, and that for turbulence,

ℓ+
T

, measured a posteriori from DNSs. ℓ+
T,pred

corresponds to the origin of turbulence predicted using ℓ+
T,pred

= ℓ+w when ℓ+w < ℓ
+
v and equation (6)

when ℓ+w > ℓ
+
v . The symbol ‘∗’ indicates that the simulation failed to model the effect of virtual origins, and we could not obtain them.
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flow within the channel. The dominant terms in equa-

tion (4) are those in the diagonal, that is C+uu and C+ww for

u+ and w+, which correspond to the slip lengths in the

streamwise and spanwise directions, respectively, and

C+vp for v+, which is equivalent to the impedance co-

efficient of Jiménez et al. (2001) that relates the wall-

normal velocity and the pressure.

To illustrate how the impedance for the wall-normal

transpiration varies for different flow lengthscales, the

transpiration coefficient C+vp for different wavelengths

is portrayed in figure 4(a). Note that the Stokes

equation is isotropic in the x and z directions, and

therefore C+vp depends only on the spherical wave-

length, λ̂ = 2π/

√

α2
x + α

2
z , where αx and αz are the

streamwise and spanwise wavenubers, respectively.

This figure shows that the reference plane is essentially

impermeable to large eddies, while the impermeability

relaxes for smaller eddies and these can permeate

through more easily. Additionally, figure 4(b) compares

the transpiration coefficient, C+vp, and the spanwise slip

coefficient, C+ww, experienced by eddies of the size of

near-wall streaks (i.e. λ+x ≈ 1000 and λ+z ≈ 100) and of

quasi-streamwise vortices (i.e. λ+x ≈ 100 and λ+z ≈ 100)

for different ℓ+. It shows that both the streaks and

quasi-streamwise vortices are subject to essentially

the same slip length as the mean, C+ww = ℓ
+. This,

although not shown, is also the case for the streamwise

slip coefficient C+uu. In contrast, the transpiration C+vp

is more sensitive to the wavelengths. Although C+vp is

essentially zero for very large λ̂+, its value increases

as the wavelengths decrease. This can be observed

especially for ℓ+ = 4 in figure 4(b), where the surface

is already significantly permeable for λ+z ≈ 100. These

observations will allow us to later simplify the off-wall

conditions (4).

From the four virtual origins under study, ℓ+ = 1, 2, 3

and 4, the first two exhibit proportionately the same be-

haviour. Therefore, for clarity only results for ℓ+ = 2, 3

and 4 are presented. These are labelled as cases FP222,

FP333 and FP444, respectively, where the digits corre-

spond to the sought values for the virtual origins for u,

w and v, respectively, and the letters refer to the model

used. The first letter F(ull) means that the full Stokes

conditions from equation (4) are used, and the second

letter, P(ressure), means that the boundary condition for

v uses a fully implicit coupling between v and p.

To assess if these cases successfully model a smooth

wall at y+ = −ℓ+, figure 5 portrays one-point statistics

obtained from the DNSs. In the panels on the left, pan-

els (a.1-a.4), the mean velocity profile and the turbulent

fluctuations are represented in the conventional form,

with the origin of the wall-normal height at the refer-

ence plane, y+ = 0, and scaled with uτ measured at that

height. In this framework, in panel (a.1) the non-zero

slip velocity, U+
slip

, is observed at the reference plane,

y+ = 0, which is essentially the depth of the virtual ori-

gin for the mean flow, ℓ+
U

. This shift, however, does

not extend along the entire y-range. The shift of the

mean profile in the logarithmic region is significantly

smaller than U+
slip

and for cases FP333 and FP444 it

even becomes negative, revealing the adverse effect of

the boundary conditions on ∆U+ and hence the drag.

Additionally, the rms velocity profiles, the Reynolds

stresses and the streamwise vorticity in panels (a.2-a.4)

are displaced towards the reference plane and show a

change in magnitude compared to a smooth channel.

Since the aim was to model a smooth wall at y+ =

−ℓ+, smooth-channel profiles with an origin at y+ = −ℓ+
should be recovered. This origin implies that uτ should

be obtained from the total stress at that height. This

cannot be measured directly, but the total stress profile

within the channel is linear and it can be extrapolated

to y = −ℓ. The friction velocity at that height is then

uτ = uτy=0
(1+ ℓ/δ)1/2. The effective half-channel height,

in turn, becomes δ′ = δ + ℓ. Defined this way, the

only difference between the profiles should be the off-

set in y+ by their origin, ℓ+, and shifting them should

give a collapse of all the turbulence profiles with the

smooth-wall data. This is how results are represented

in panels (b.1-b.4). At a first glance, the profiles sug-

gest that the boundary conditions of equation (4) pro-

vide a good model for ℓ+ . 2, as all the curves for

case FP222 in panels (b.1-b.4) show an excellent col-

lapse with smooth-wall data. Note that in the panels

on the left, the peaks of the fluctuations for case FP222

show a slight increase in magnitude with respect to a

smooth wall. This is an artefact of the scaling, and

all deviations from the smooth-wall data vanish when

values are scaled by the friction velocity measured at

y+ = −2. This highlights the relevance of the scaling for

the interpretation of the data. For larger ℓ+, however, the

Stokes model fails to mimic a smooth wall at y+ = −ℓ+,

as shown by the deviations of the mean velocity profile

and the turbulent intensities for cases FP333 and FP444

in panels 5(b.1-b.4). For these cases, the model does not

merely shift the overlying flow by the virtual origin, but

it also modifies it.

To gain further insight on whether the intensity of

the one-point statistics arises from a mere change in

intensity or a redistribution of energy, we examine the

spectral density distributions of u2, v2 and w2. As an

example, figure 6 shows the energy distribution at a
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Figure 4: (a) Dimensionless transpiration coefficient Cvp as a function of the spherical wavelength λ̂ = 2π/

√

α2
x + α

2
z , both scaled with the depth

of the virtual wall, ℓ+. The curve is a collapse of several curves with different values of ℓ+, from blue to red ℓ+ ∈ [0.1 − 4]. (b) – – –, transpiration

coefficient C+vp; ——, spanwise slip coefficient C+ww/ℓ
+, for λ+z ≈ 100 as a function of λ+x for different virtual origins ℓ+ = 1, 2, 3 and 4. Arrows

indicate increasing ℓ+ and the vertical dotted lines correspond to lengthscales of the size of streaks and quasi-streamwise vortices.

height of roughly 10 wall units above the virtual ori-

gin, y+ + ℓ+ ≈ 10. For ℓ+ = 2, the agreement with

the smooth channel is excellent, confirming that turbu-

lence remains essentially smooth-wall-like and that the

effect of the boundary conditions (4) is to ascribe the

position of a smooth wall to y+ = −ℓ+. For cases FP333

and FP444, however, there are some differences. Panels

(d-i) reveal that the variations in intensity in the one-

point statistics are caused by contributions from length-

scales that are not significant over smooth walls. The

wall-normal velocity exhibits the most dramatic change.

Panels (e) and (h) show the appearance of a new ener-

getic region, short in x and wide in z. These lengthscales

are also appreciable in the instantaneous realisations of

u+ and v+ portrayed in figure 7. We observe that, al-

though the velocity fields for case FP222 in panels (c-d)

resemble those over a smooth wall, where the u-field

displays the signature of the streaks and the v-field that

of quasi-streamwise vortices, the fields for case FP444

in panels (e-f ) are very different and show the appear-

ance of new lengthscales. This can be attributed to the

large values of the impedance coefficient C+vp assigned

to small lengthscales, as observed in figure 4(a), which

excites short modes. This will be further analysed in the

following subsections. Notice also that for cases FP333

and FP444, it is not possible to obtain a virtual origin

for turbulence per se, as by definition the concept of a

virtual origin assumes that the near-wall cycle and the

turbulence dynamics remain smooth-wall-like, which is

no longer the case. This is why table 2 does not provide

a value for ℓ+
T

for cases FP333 and FP444.

3.1.2. Uncoupled boundary conditions from a Stokes-

flow model

The implementation of the boundary conditions from

equation (4) involves the full coupling between the three

velocities and the pressure, which would make setting

different virtual origins for each velocity component dif-

ficult. In what follows, we neglect certain terms from

equation (4), while still maintaining a common virtual

origin at y+ = −ℓ+. The aim is to study the decoupling

of the boundary conditions on the three velocity compo-

nents to later impose different virtual origins. We do so

by retaining only the dominant terms for each compo-

nent, that is, the slip coefficients C+uu and C+ww for u+ and

w+, respectively, and the transpiration coefficient C+vp

for v+. Thus, the boundary condition for each velocity

component is independent of the other two components.

For this model, only virtual origins with ℓ+ = 2 and

3 were tested, labelled as DIP222 and DIP333, where

D(iagonal) denotes that only the three coefficients in the

diagonal of equation (4) are retained, I(nhomogeneous)

denotes that the coefficients for u and w are wavelength-

dependent, and P denotes that the boundary condition

for v is imposed in terms of p. As before, the digits

correspond to the virtual origins for u, w and v that we

intend to impose.

For ℓ+ = 2, case DIP222, the model reproduces rea-

sonably well the effect of a virtual wall at y+ = −2, as
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Figure 5: First column (a.1-a.4), profiles scaled with uτ measured at the reference plane where the boundary conditions are imposed, y+ = 0. Second

column (b.1-b.4), profiles scaled with uτ measured at the virtual wall, y+ = −ℓ+, and shifted by ℓ+. - - - -, smooth channel; ——, FP222; ——,

FP333; ——, FP444. (a.1,b.1) Mean velocity profiles; (a.2,b.2) rms velocity fluctuations; (a.3,b.3) Reynolds shear stress; (a.4,b.4) streamwise

vorticity fluctuations.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 6: Premultiplied two-dimensional spectral densities of u2, v2 and w2, referred to as kxkzEuu, kxkzEvv and kxkzEww, respectively. Shaded

contours correspond to the smooth channel at y+ ≈ 10 and the solid lines to the DNSs shifted by their corresponding virtual origin, i.e. at

y+ ≈ 10 − ℓ+, and scaled with uτ measured at y+ = −ℓ+. (a-c) ——, FP222; (d-f ) ——, FP333; (g-i) ——, FP444. First column, kxkzEuu; second

column kxkzEvv; third column, kxkzEww. The contour increments in wall units are 0.3241, 0.0092 and 0.0404, respectively.

shown by the good collapse of the profiles with smooth-

wall data illustrated in figures 8(a.1-a.4). On a closer

inspection, however, the turbulent fluctuations show a

small, but noticeable, deviation from the smooth-wall

data. In particular, the depth of the virtual origin of w

and v is slightly less than 2 wall-units and, as a result,

the shift of the streamwise vorticity and the Reynolds

stress, which relate to the origin for quasi-streamwise

vortices, is also slightly less than 2 wall units, approxi-

mately, ℓ+
T
≈ 1.5 (see table 2). The origin for the mean

flow, on the other hand, is at y+ = −2. The difference

between the virtual origin perceived by the mean flow

and that perceived by the quasi-streamwise vortices re-

sults in a small upward shift of the log law, as can be

appreciated in panel (a.1).

For ℓ+ = 3, on the other hand, results are, as expected,

no better than those previously observed with full off-

wall conditions, case FP333. The current model also

fails to mimic a virtual origin at y+ = −3.
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(a) (c) (e)

(b) (d) (f )

Figure 7: Instantaneous realisations of streamwise, u′+, (top) and wall-normal, v′+, (bottom) velocities at a plane parallel to the wall. (a-b) Smooth

channel at y+ ≈ 7. (c-d) Case FP222 at y+ ≈ 7 − ℓ+ ≈ 5. (e-f ) Case FP444 at y+ ≈ 7 − ℓ+ ≈ 3. In all cases, red to blue corresponds to [−5.0,+5.0]

for u′+ and [−0.48,+0.48] for v′+.

3.1.3. Uncoupled boundary conditions from a Stokes-

flow model with homogeneous slip lengths

To further simplify the boundary conditions, we now

impose homogeneous tangential slip lengths (ℓ+x and

ℓ+z ) to model the virtual origins of u and w, removing

any dependencies of the slip coefficients on the length-

scales. For v, on the other hand, we keep a wavelength-

dependent transpiration, C+vp, as before. This follows

from previous studies on slip-only simulations (Min and

Kim, 2004; Busse and Sandham, 2012), and is also sup-

ported by the observations in the preceding discussion

regarding figure 4(b). This figure shows how C+ww is es-

sentially homogeneous across the energetically relevant

lengthscales in the flow, and assuming it to be homoge-

neous is therefore a sensible approximation. The same

can also be argued for C+uu, but not C+vp. For the lat-

ter, its wavelength-dependent nature is significant in the

characteristic range of near wall turbulence and would

thus need to be accounted for. We refer to these simu-

lations as DHP222, DHP333 and DHP444 where, com-

pared to the previous cases, the second letter has been

switched to H(omogeneous) to denote that the bound-

ary conditions for u and w are now homogeneous, that

is, the same for all wavelengths.

The results obtained with this model are similar

to those in the previous subsection, as shown in fig-

ures 8(b.1-b.4). For ℓ+ = 2, case DHP222 mimics

reasonably well a wall at y+ = −2, although, as for

DIP222, the origin perceived by quasi-streamwise vor-

tices is slightly shallower than 2 wall units. For larger

ℓ+, cases DHP333 and DHP444 also failed to model a

virtual wall at y+ = −3 and y+ = −4, respectively. Addi-

tionally, with uncoupled boundary conditions, the pro-

files of v′+ near the wall diverge even more than when

full Stokes-flow conditions were imposed, i.e. in cases

FP333 and FP444 from before. Although not shown

here, with uncoupled boundary conditions the new en-

ergetic region observed previously in the v-spectrum of

FP333 and FP444 intensifies, supporting the idea that

the disparity between these cases and the correspond-

ing smooth channel is indeed due to the large perme-

ability values at small lengthscales. In order to elim-

inate the appearance of the new lengthscales observed

for DHP333 and DHP444, a low-pass filtering on C+vp

was also tested in a separate simulation. In this case,

the boundary condition v+ = C+vp p+ was applied only

to larger eddies, while eddies smaller than λ+x < 50 and

λ+z < 10 were free to permeate through a boundary con-

dition of the form dv+/dy+ = 0, avoiding possible feed-

back amplification between v and p. However, this was

not sufficient to impede the amplification of all the small

lengthscales.

3.1.4. Robin conditions for the three velocities

Given that the model constructed from the Stokes

equation breaks down for a virtual origin deeper than

two wall units, which would be insufficient to model

a sufficiently wide range of virtual origins, a different

strategy was investigated. By analogy with the slip-

length model for the tangential velocities, we propose
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Figure 8: (a.1-a.4) ——, DIP222; ——, DIP333; – – –, smooth channel. (b.1-b.4) ——, DHP222; ——, DHP333; ——, DHP444; – – –, smooth

channel. (a.1-b.1) Mean velocity profiles; (a.2-b.2) rms velocity fluctuations; (a.3-b.3) Reynolds shear stresses; (a.4-b.4) streamwise vorticity

fluctuations. All the profiles are scaled with uτ measured at the virtual wall, y+ = −ℓ+, and shifted by ℓ+.
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Robin conditions for the three velocity components,

u|y=0 = ℓx
∂u

∂y

∣

∣

∣

∣

∣

y=0

, (5a)

w|y=0 = ℓz
∂w

∂y

∣

∣

∣

∣

∣

y=0

, (5b)

v|y=0 = ℓy
∂v

∂y

∣

∣

∣

∣

∣

y=0

, (5c)

so that u, w and v are related to their respective wall-

normal gradients by three slip lengths, ℓx, ℓz and ℓy.

Note that for v, ℓy does not convey a slip effect, but,

by extension, in the present work, we also refer to ℓy as

the ‘slip length’ in the wall-normal direction. In what

follows, we will set a homogeneous ℓ+y , that is, equal

for all wavelengths, except for the mean (i.e. λx → ∞
and λz → ∞), which from continuity must be zero.

While the concepts of slip lengths and virtual origins

have been used interchangeably in the literature, here

we make a subtle, but important, difference. We will de-

note by ℓ+x , ℓ+z and ℓ+y the slip lengths in the streamwise,

spanwise and wall-normal directions, respectively, de-

fined as the proportionality coefficients in Robin bound-

ary conditions (5). From a physical point of view, the

slip lengths simply correspond to the y-locations where

the velocity components become zero when linearly ex-

trapolated from the reference plane. In contrast, we de-

fine the virtual origins of u, w and v as the locations be-

low the reference plane where each velocity component

perceives a virtual, smooth wall. These are at y+ = −ℓ+u ,

y+ = −ℓ+w and y+ = −ℓ+v , respectively. These corre-

spond to the heights where the rms profiles of the ve-

locity fluctuations u′+, w′+ and v′+ would go to zero as-

suming that the shape of the profiles remained smooth-

wall-like independently from each other, as illustrated

in figure 9(a). The slip lengths for the Robin boundary

conditions are therefore chosen according to the virtual

origins that we intend to impose, ℓ+u , ℓ+w and ℓ+v , which

in the framework of modelling the presence of a smooth

wall would be ℓ+u = ℓ
+
w = ℓ

+
v = ℓ

+. For a virtual origin

of a few wall units, we expect the slip lengths ℓ+x and ℓ+z
to be approximately equal to the origins ℓ+u and ℓ+w, as

the tangential velocities u+ and w+ are essentially linear

in the immediate vicinity of the wall. We therefore as-

sume that ℓ+x ≈ ℓ+u and ℓ+z ≈ ℓ+w, and set ℓ+x and ℓ+z equal

to 2, 3 and 4. The case of v, however, is slightly more

delicate. Due to v′ being quadratic with the distance to

the wall, the depth of the virtual origin of v, ℓ+v , dif-

fers from the slip length ℓ+y , even for small values. We

set ℓ+y by matching the ratio between v′+ and dv+/dy+

at the boundary plane with that at a height ℓ+v above a

smooth wall. From figure 9(b), we can observe that ℓ+y

and ℓ+v relate to each other by ℓ+y = ℓ
+
v − ℓ+sm, where ℓ+sm

is obtained from extrapolating the gradient of v′+-profile

from a smooth-wall DNS at y+ = ℓ+v . This is the depth

where, from the point of view of the plane y+ = ℓ+v ,

the v′+-profile would extrapolate to zero. Note that the

value of ℓ+sm is a function of ℓ+v , as it depends on the lo-

cal gradient at the height at which the extrapolation of

the profile is calculated. The values of the slip lengths

and virtual origins for the simulations here analysed are

compiled in table 2. These cases are labelled DHV222,

DHV333 and DHV444, where the third letter has been

switched to V to indicate that the boundary condition

for v is now set by a Robin boundary condition in terms

of v alone.

Comparing to the models investigated in the previous

sections, this technique produces a significant improve-

ment on the results, as shown by the good collapse of

the turbulent profiles in figure 10 and the spectral en-

ergy distributions in figure 11, as well as by the simi-

larity in the instantaneous flow fields between the three

cases illustrated in figure 12. This model reproduces

with reasonable accuracy not only a virtual origin at

y+ = −2, but also at y+ = −3 and y+ = −4. How-

ever, on a closer inspection, the resulting origins for the

transverse velocities, and consequently the origin for

turbulence, y+ = −ℓ+
T

, are slightly shallower than ex-

pected (see table 2). This is due to the curvature of w′+,

which was neglected when assuming ℓ+w = ℓ
+
z . Beyond

y+ & 1, w′+ is not exactly linear, and hence the origin

of the spanwise velocity actually imposed is shallower

than originally intended, as can be appreciated in fig-

ure 13. This suggests that we should have accounted for

the curvature of w′, and defined ℓ+z in a similar fashion

to ℓ+y . In retrospect, contemplating the effect of the cur-

vature, the depth of the origin of the spanwise velocity

for cases DHV222, DHV333 and DHV444 is ℓ+w = 1.7,

2.3 and 2.9, respectively, as indicated by the values be-

tween parentheses in table 2. This effect of the curva-

ture, although weaker, is also present for u′+, but for the

origins here considered, ℓ+ . 4, this effect is negligi-

ble. Considering ℓ+x = ℓ
+
u remains therefore an accurate

approximation.

In these simulations, the displacement of quasi-

streamwise vortices towards the reference plane would

be limited by the spanwise velocity, since ℓ+w is the most

restrictive origin between those of v and w, i.e. ℓ+w < ℓ
+
v .

This is evidenced from the displacement of the stream-

wise vorticity and Reynolds stress curves, where the ori-

gin of turbulence is found to be approximately coinci-

dent with that of w, ℓ+
T
≈ ℓ+w. Therefore, when ℓ+w < ℓ

+
v ,

the origin for turbulence could be predicted by ℓ+w, i.e.

ℓ+
T,pred

= ℓ+w, as can be observed in table 2.
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Figure 9: Schematics showing (a) the definition of the depths of the virtual origins ℓ+u , ℓ+w and ℓ+v as the shift of the rms velocity fluctuations with

respect to a smooth channel; (b) the difference between ℓ+v and ℓ+y . ——, smooth channel; ——, curves with equal origins for the three velocity

components.

Moreover, when displaced by ℓ+
T

, the one-point statis-

tics in figure 10 and the spectral density distributions of

u2, v2 and w2 in figure 11 show a better collapse with

the smooth-wall data than when displaced by their cor-

responding virtual origins. This suggests that the near-

wall cycle, typically at heights y+ + ℓ+
T
≈ 10− 25, is dis-

placed in block by the origin perceived by turbulence,

ℓ+
T

, even though at the reference plane the velocity com-

ponents decay to their respective virtual origins, as en-

forced by the Robin boundary conditions. Thus, in fig-

ures 10 and 11 we use y+ = −ℓ+
T

as the origin for the

wall-normal height, with uτ measured at that origin.

While the turbulent fluctuations perceive an origin at

y+ = −ℓ+
T

, the origin for the mean flow agrees with the

streamwise slip length, i.e. ℓ+
U
= ℓ+x , as the mean veloc-

ity profile is much closer to linear in the viscous sub-

layer than w′+ or v′+. It follows from the mean stream-

wise momentum equation for U(y) that the mean ve-

locity profile is determined by the overlying turbulence

through the Reynolds shear stress (Garcı́a-Mayoral and

Jiménez, 2011; Garcı́a-Mayoral et al., 2019). If the only

effect of the virtual origins on turbulence, and hence on

the Reynolds stress, is shifting its origin to y+ = −ℓ+
T

,

the only change in the mean velocity profile U+ com-

pared to a smooth wall would be a shift by its value

at y+ = −ℓ+
T

. Above this height, the U+-profile would

curve up as it does over a smooth wall, while below

it would remain essentially linear with y+. The slight

upward shift of the logarithmic region compared to a

smooth wall can then be attributed to the difference in

the origin perceived by the mean flow and by turbu-

lence, ℓ+
U
−ℓ+

T
, and subtracting this difference gives a col-

lapse of the velocity profiles, as shown in figure 10(b.1).

This confirms the original idea from Luchini (1996) that

“the law of the wall describing the mean-flow profile of

the turbulent stream is modified by the presence of ri-

blets only through a displacement of the origin of an

amount equal to the protrusion-height difference. This

is what one could expect if the structure of turbulent ed-

dies were unaltered in the reference frame that has the

transverse equivalent wall as origin, whereas the mean

flow profile obviously starts at the longitudinal equiva-

lent wall,” with the small correction that the origin per-

ceived by turbulence is not directly at y+ = −ℓ+z .

The differences between the virtual origins of the

three velocity components and turbulence in the cases

studied, however, are too narrow for the evidence to be

conclusive. The hypothesis that turbulence is displaced

in block by ℓ+
T

needs to be further tested by imposing

significantly different virtual origins for the different ve-

locity components. This is preliminarily investigated in

the next section.

3.2. Different virtual origins for the tangential and

wall-normal velocities with Robin boundary con-

ditions

Now that we have found a suitable technique to im-

pose a virtual origin for the three velocities, we can in-

vestigate setting different origins for each component

and how they affect the overlying flow. In this section,

we consider cases with ℓ+x = ℓ
+
z = 2, 3 and 4 as before,

but with v = 0 at the reference plane y = 0, i.e. con-

ventional slip-only simulations as those of Busse and

Sandham (2012) and Min and Kim (2004). These cases
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Figure 10: First column (a.1-a.4), profiles scaled with uτ measured at the reference plane where the boundary conditions are imposed, y+ = 0.

Second column (b.1-b.4), profiles scaled with uτ measured at the origin of turbulence, y+ = −ℓ+
T

, and shifted by ℓ+
T

. – – –, smooth channel; ——,

DHV222; ——, DHV333; ——, DHV444. (a.1,b.1) Mean velocity profiles; (a.2,b.2) rms velocity fluctuations; (a.3,b.3) Reynolds shear stresses;

(a.4,b.4) streamwise vorticity fluctuations.
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(a) (b) (c)

Figure 11: Premultiplied two-dimensional spectral densities of u2, v2 and w2. Shaded contours correspond to the smooth channel at y+ ≈ 10 and

the solid lines to the present DNSs shifted by their corresponding virtual origin of turbulence, i.e. at y+ ≈ 10 − ℓ+
T

, and scaled with uτ measured

at y+ = −ℓ+
T

. ——, DHV222; ——, DHV333; ——, DHV444. (a) kxkzEuu, (b) kxkzEvv; (c) kxkzEww. The contour increments in wall units are

0.3241, 0.0092 and 0.0404, respectively.

(a) (c) (e)

(b) (d) (f )

Figure 12: Instantaneous realisations of streamwise, u′+, (top) and wall-normal, v′+, (bottom) velocities at a plane parallel to the wall. (a-b) Case

DHV222 at y+ ≈ 7 − ℓ+
T
≈ 5.3. (c-d) Case DHV333 at y+ ≈ 7 − ℓ+

T
≈ 4.7. (e-f ) Case DHV444 at y+ ≈ 7 − ℓ+

T
≈ 4.1. In all cases, red to blue

corresponds to [−5.0,+5.0] for u′+ and [−0.48,+0.48] for v′+.

are referred to as DHV220, DHV330 and DHV440, re-

spectively, where, as before, the three digits correspond

to the depths of the virtual origins imposed for u, w and

v; although due to the curvature effect of w, its origin

is shallower than y+ = −2, −3 and −4, respectively, as

previously discussed and indicated in table 2.

As mentioned before, the displacement of the quasi-

streamwise vortices towards the reference plane is de-

termined by the origins of the spanwise and wall-normal

velocities, which are set at y+ = −ℓ+w and y+ = −ℓ+v = 0,

respectively. The vortices approach the wall, as they

are allowed to slip in the spanwise direction, but their

downward displacement is now restricted by v being

zero at the simulation boundary. The origin that the

vortices perceive, y+ = −ℓ+
T

, is therefore at an inter-

mediate height between y+ = −ℓ+w and y+ = −ℓ+v , that

is, ℓ+w < ℓ
+
T
< ℓ+v . From the displacement of the pro-

files of ω′+x and u′v′
+

in figure 14, this origin is at a

depth below the reference plane of ℓ+
T
≈ 1.3 for case

DHV220, ℓ+
T
≈ 1.7 for case DHV330 and ℓ+

T
≈ 1.9 for

DHV440. This reflects the saturation effect of the span-

wise slip discussed in section 1. Notice that the v′+-

profiles in panel 14(a.2) are also shifted in y+ relative to

the smooth-wall profile, even though the boundary con-

dition remains v+ = 0 at the reference plane. This is

because u+ and w+ are not zero at this plane, and from

continuity, the gradient dv+/dy+ is no longer zero. This

results in a shift in y+ of the v′+-profiles, which coin-

cides with ℓ+
T

. The resulting virtual origin perceived by

v is therefore not at y+ = 0, but at y+ = −ℓ+
T

.

Fairhall and Garcı́a-Mayoral (2018) proposed that the
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Figure 13: Rms velocity fluctuations near the reference plane. Zoom

of the near-wall region from figure 10(a.2). - - - -, smooth channel;

——, DHV222; ——, DHV333; ——, DHV444. The dashed-dotted

lines show the linear extrapolation of the profiles, which for the span-

wise velocity vanish at y+ = −ℓ+z , giving the spanwise slip length;

and the dotted lines show the extrapolation retaining the curvature of

smooth-wall profiles, which vanish at the virtual origin y+ = −ℓ+w.

saturation effect in slip-only simulations could be repre-

sented by an empirical, effective spanwise slip length,

ℓ+
z,e f f
= ℓ+z /(1 + ℓ

+
z /4). However, given that the curva-

ture of w′+ needs to be accounted for, it would be more

appropriate to express the prediction of ℓ+
T

in terms of

ℓ+w instead of ℓ+z , which yields

ℓ+w,e f f =
ℓ+w

1 + ℓ+w/4
. (6)

The good agreement between the values of ℓ+
T

mea-

sured a posteriori in the DNSs and those predicted using

equation (6), ℓ+
T,pred

= ℓ+
w,e f f

, can be observed in table 2.

Equation (6) provides therefore an expression to predict

ℓ+
T

when ℓ+v = 0.

The present results agree with the observations from

the previous section 3.1.4, and support the idea that the

near-wall cycle is shifted in block by ℓ+
T

, but remains

otherwise smooth-wall-like. This is evidenced by the

excellent collapse with the smooth-wall data observed

in the one-point statistics and the spectral density distri-

butions in figures 14(b.1-b.4) and 15, where they have

all been shifted by ℓ+
T

, with uτ measured at that ori-

gin. This implies that the effect of virtual origins on

the overlying turbulence is represented well by a sin-

gle parameter, the origin of turbulence, ℓ+
T

, although

there are small differences immediately above the ref-

erence plane, caused by the specific boundary condi-

tions imposed. The profiles of u′+ in figure 14(b.2), for

instance, decay linearly towards the streamwise virtual

origin, y+ = −ℓ+x , which is deeper than y+ = −ℓ+
T

. The

viscous sublayer is therefore thickened, modifying the

gradient in the proximity of y+ = 0 and resulting also

in a slight increase of the magnitude of the peak. This,

however, does not appear to alter the near-wall dynam-

ics.

From the present results, the imposed virtual origins

ℓ+u , ℓ+v and ℓ+w (or alternatively the slip lengths ℓ+x , ℓ+y
and ℓ+z ) appear to have separate effects on the overlying

flow. The latter two set the origin of turbulence, ℓ+
T

,

and hence determine the displacement of the near-wall

cycle, while ℓ+u is essentially inactive on modifying the

turbulence cycle, and acts on determining the shift of

the mean flow. This is illustrated by the mean velocity

profiles shown in panel (a.1), where the origin of the

mean flow is at a depth of 2, 3 and 4 wall units below

the reference plane for the cases DHV220, DHV330 and

DHV440, respectively, and hence ℓ+
U
= ℓ+u (where ℓ+u =

ℓ+x ).

Taking the virtual origin of turbulence, y+ = −ℓ+
T

,

as the origin for the wall-normal coordinate, as in fig-

ure 14(b.1) and 10(b.1), shows that the difference be-

tween the mean velocity profiles reduces to an offset

ℓ+
U
− ℓ+

T
, homogeneous along the entire y-range, and

which corresponds to the value of U+ measured at the

origin of turbulence. Luchini’s linear law, given by

equation (1), can then be generalised to

∆U+ = ℓ+U − ℓ
+
T . (7)

This equation supports the existing understanding that

the change in drag is caused by the difference between

the virtual origins perceived by the mean flow and that

perceived by the overlying turbulence. In general, we

can expect ℓ+
U
≈ ℓ+x , because in the viscous sublayer the

mean velocity profile is essentially linear, which means

that ℓ+
U

can be predicted by ℓ+x . However, the origin for

turbulence, determined by the displacement of quasi-

streamwise vortices to the reference plane, is not fully

defined by ℓ+z alone, as originally postulated by Jiménez

(1994) and Luchini (1996), but by a combination of the

origins perceived by the spanwise and wall-normal ve-

locities, ℓ+w and ℓ+v . This implies that drag reduction can

still be obtained despite the slip lengths in the stream-

wise and spanwise directions being equal, as reported

in the literature (Min and Kim, 2004; Busse and Sand-

ham, 2012) and in contradiction with Luchini’s origi-

nal theory (1), due to the wall-normal velocity having a

shallower virtual origin. Our preliminary results sug-

gest that we could predict ℓ+
T

from the spanwise and

wall-normal virtual origins imposed a priori, ℓ+w and ℓ+v ,

or, alternatively from their corresponding slip lengths ℓ+z
and ℓ+y , as there is a one-to-one relationship between slip
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Figure 14: First column (a.1-a.4), profiles scaled with uτ measured at the reference plane where the boundary conditions are imposed, y+ = 0.

Second column (b.1-b.4), profiles scaled with uτ measured at the origin of turbulence, y+ = −ℓ+
T

, and shifted by ℓ+
T

. – – –, smooth channel; ——,

DHV220; ——, DHV330; ——, DHV440. (a.1,b.1) Mean velocity profiles; (a.2,b.2) rms velocity fluctuations; (a.3,b.3) Reynolds shear stresses;

(a.4,b.4) streamwise vorticity fluctuations.
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(a) (b) (c)

Figure 15: Premultiplied two-dimensional spectral densities of u2, v2 and w2. Shaded contours correspond to the smooth channel at y+ ≈ 10 and

the solid lines to the present DNSs shifted by their corresponding virtual origin of turbulence, i.e. at y+ ≈ 10 − ℓ+
T

, and scaled with uτ measured

at y+ = −ℓ+
T

. ——, DHV220; ——, DHV330; ——, DHV440. (a) kxkzEuu, (b) kxkzEvv; (c) kxkzEww. The contour increments in wall units are

0.3241, 0.0092 and 0.0404, respectively.

lengths and virtual origins. Knowing the slip lengths,

ℓ+x , ℓ+z and ℓ+y , the depths of the virtual origins, ℓ+u , ℓ+w
and ℓ+v , can be obtained, and vice-versa. More simula-

tions, covering a wider range of combinations of ℓ+u , ℓ+v
and ℓ+w, are however required to derive a formal expres-

sion for ℓ+
T

.

4. Conclusions

In flows over complex surfaces with small texture

sizes, the velocity components may appear to vanish at

different heights, that is, different virtual origins can be

defined for the different velocity components. In the

present work, we have explored different techniques to

define and implement these virtual origins into DNSs,

with special emphasis on the boundary conditions for

the wall-normal velocity. We investigated impedance

conditions derived from a Stokes-flow model, which re-

late the wall-normal velocity to the pressure, as well

as Robin conditions for the three velocities, which re-

late velocity components with their wall-normal gradi-

ents. We have shown that Robin boundary conditions on

the three velocities, as given by equation (5), can effec-

tively capture the effect of virtual origins on the overly-

ing flow, and provide a first step towards the formulation

of simplified models for textured surfaces.

Our results suggest that the effect of the three virtual

origins on the overlying flow can be reduced to a differ-

ent virtual origin perceived by the mean flow, y+ = −ℓ+
U

,

and by the overlying turbulence, y+ = −ℓ+
T

, confirming

Luchini’s original idea. The origin of turbulence, how-

ever, is not determined by the origin of the spanwise

velocity alone, but by the origins perceived by the span-

wise and wall-normal velocities. Therefore, other than a

shift in the wall-normal coordinate by ℓ+
T

, the near-wall

turbulence and its dynamics remain smooth-wall-like.

By this shift, we implicitly refer not only to a displace-

ment in y+ by ℓ+
T

, but also to a rescaling of the results

by the friction velocity defined at y+ = −ℓ+
T

. As a result,

the only change in the mean velocity profile is an offset

by its value at the origin for turbulence, ∆U+ = ℓ+
U
− ℓ+

T
,

which generalises Luchini’s linear theory for the change

of drag.

There are, however, two main limitations to the

model of Robin boundary conditions. First, the virtual-

origin model implicitly assumes that the near-wall cy-

cle remains canonical, that is, it remains as that over

a smooth wall, and hence the imposed virtual origins

can only be of a few wall units, ℓ+ ≃ 10, so that the

near-wall cycle is not completely ingested below the

reference plane. Second, the validity of Robin bound-

ary conditions relies on the velocity rms profiles being

smooth-wall-like independently from each other, since

the slip lengths are obtained based on the wall-normal

gradients of the smooth profiles. This implies that the

present model and the expression for ℓ+
T

are valid as long

as the virtual origins set for the three velocity compo-

nents differ only by a few wall units between them. If

the origins perceived by the different components dif-

fer substantially, the resulting wall-normal gradients at

the reference plane may be modified from those of a

smooth wall, due to the coupling between the veloci-

ties just above the reference plane. As a result, the ac-

tual origins would be different to those expected. Addi-

tionally, assuming that these Robin boundary conditions
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are applicable to model the effect of real complex sur-

faces, there is the additional effect of the texture gran-

ularity that the model is not able to capture (Fairhall

et al., 2019). Further investigation is therefore needed

to find if the virtual-origin model developed here can

adequately account for the change in drag produced by

different complex surfaces.
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