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We explore the ability of anisotropic permeable substrates to reduce turbulent skin-
friction, studying the influence that these substrates have on the overlying turbulence. For
this, we perform DNSs of channel flows bounded by permeable substrates. The results
confirm theoretical predictions, and the resulting drag curves are similar to those of
riblets. For small permeabilities, the drag reduction is proportional to the difference
between the streamwise and spanwise permeabilities. This linear regime breaks down for
a critical value of the wall-normal permeability, beyond which the performance begins to
degrade. We observe that the degradation is associated with the appearance of spanwise-
coherent structures, attributed to a Kelvin-Helmholtz-like instability of the mean flow.
This feature is common to a variety of obstructed flows, and linear stability analysis can
be used to predict it. For large permeabilities, these structures become prevalent in the
flow, outweighing the drag-reducing effect of slip and eventually leading to an increase
of drag. For the substrate configurations considered, the largest drag reduction observed
is ≈ 20− 25% at a friction Reynolds number δ+ = 180.

1. Introduction

The high skin friction experienced in turbulent flows represents a problem for several
engineering applications, such as pipelines and transportation vehicles. The need is
therefore to develop new technologies that reduce turbulent drag, preferably passive,
since in contrast with active technologies, these do not require an energy input and
have generally lower manufacturing costs. In this paper we present the potential of
anisotropic permeable substrates, a passive technology, to reduce turbulent skin friction,
aimed particularly at external flow applications, as has recently been proposed by
Abderrahaman-Elena & Garćıa-Mayoral (2017).

Most of the literature in turbulent flows over permeable substrates has focused on
isotropic materials, observing a substantial increase in drag with respect to a smooth
wall (Breugem et al. 2006; Rosti et al. 2015; Kuwata & Suga 2016). This increase
has often been attributed to the onset of large spanwise-coherent structures, which
increase the momentum transfer and thus the Reynolds stresses near the wall. Here,
we study the effect of anisotropy. We show that a substrate with streamwise-preferential
permeability, that is, a substrate where the permeability is higher in the streamwise
than in the cross directions, can reduce turbulent drag, and we provide physical insight
into this phenomenon. Recent studies have also covered anisotropic substrates, albeit not
considering the case of streamwise-preferential permeability (Kuwata & Suga 2017; Suga
et al. 2018).

Previous studies have shown that streamwise-preferential complex surfaces can reduce
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drag in turbulent flows (Luchini et al. 1991; Jiménez 1994; Bechert et al. 1997; Gómez-
de-Segura et al. 2018b). This is indeed the case for some of the most common passive
technologies for drag reduction, such as riblets or superhydrophobic surfaces. Recently,
Abderrahaman-Elena & Garćıa-Mayoral (2017) suggested that the drag reduction ability
of anisotropic permeable substrates is based on the same mechanism. The general idea is
that complex surfaces can reduce drag if they offer more resistance to the cross flow than
to the streamwise mean flow (Luchini et al. 1991). When the surface texture is vanishingly
small compared to the near-wall turbulent structures, the effect of complex surfaces
can be reduced to an apparent slip in the tangential directions. Luchini et al. (1991),
Jiménez (1994) and Luchini (1996) showed that the change in drag is proportional to the
difference between the streamwise and spanwise slips. This behaviour was, for instance,
observed by Hahn et al. (2002), who performed simulations of turbulent flows over
idealised substrates that were permeable in the streamwise and/or spanwise directions
only. They observed that the streamwise slip is beneficial for drag reduction, while the
spanwise slip is deleterious. Their substrates, however, were ideal in the sense that they
were impermeable in the wall-normal direction. Hence, the work by Hahn et al. (2002) is
more connected to studies where only tangential slips are allowed, such as those carried
out by Min & Kim (2004) or Busse & Sandham (2012), than to realistic permeable
substrates, where any significant tangential slip at the surface would be accompanied
by some degree of wall-normal transpiration. Recently, Rosti et al. (2018) have studied
permeable substrates with very low wall-normal permeability, which would also fall under
this category. The analysis by Gómez-de-Segura et al. (2018a) shows that the deleterious
effect of the spanwise slip saturates if this is not accompanied by a corresponding wall-
normal transpiration. Therefore, surfaces with isotropic slip, such as those considered by
Rosti et al. (2018), can also reduce drag, although suboptimally.

The linear theory of Luchini et al. (1991) and Jiménez (1994) is valid only as long
as the texture lengthscales are small compared to the characteristic lengthscales of
near-wall turbulence. As the texture size increases, additional deleterious effects set in,
breaking down the drag-reducing performance and eventually leading to an increase
of drag. The mechanisms behind these deleterious effects vary from one technology to
another. In riblets, for instance, the degradation of performance is due to the appearance
of spanwise-coherent rollers, which arise from a Kelvin-Helmholtz instability (Garćıa-
Mayoral & Jiménez 2011). These structures are in fact a prevalent feature to a variety
of obstructed flows (Ghisalberti 2009) and they have also been observed to form over
permeable substrates (Breugem et al. 2006; Kuwata & Suga 2016; Zampogna & Bottaro
2016; Suga et al. 2017). In these studies, the large increase of the Reynolds stresses
and the subsequent increase in drag was associated to the presence of Kelvin-Helmholtz
rollers. Abderrahaman-Elena & Garćıa-Mayoral (2017) suggested the appearance of these
rollers as a possible drag-degrading mechanism for anisotropic permeable substrates.
They proposed a model to bound the maximum achievable drag reduction based on the
onset of the Kelvin-Helmholtz-like instability. Gómez-de-Segura et al. (2018b) extended
the analysis and identified the wall-normal permeability as the governing parameter in
this instability. This result agrees with the work performed by Jiménez et al. (2001), who
observed the formation of Kelvin-Helmholtz rollers over substrates that were permeable
in the wall-normal direction only, and inferred that the relaxation of the impermeability
condition at the wall was sufficient to elicit the rollers.

Several drag-reducing surfaces show a linear regime, where the drag reduction increases
linearly with a certain characteristic length of the texture, followed by a saturation and
an eventual increase of drag (Garćıa-Mayoral & Jiménez 2011). Although the same has
not been shown for anisotropic permeable substrates, the similarities between the drag
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reduction curves of riblets and those of seal fur by Itoh et al. (2006) suggest a similar
behaviour (Abderrahaman-Elena & Garćıa-Mayoral 2017). The effect of the seal fur
studied by Itoh et al. (2006) would be to some extend that of an anisotropic permeable
material, since it is a layer of hairs preferentially aligned in the streamwise direction.

In the current work, we investigate the drag reduction ability of anisotropic permeable
substrates. The aim of this work is to understand how the overlying turbulent flow is
modified by the presence of such substrates and build predictive models to estimate
their drag-reducing behaviour. For that, we perform a series of DNSs of channel flows
bounded by permeable substrates. The flow within the substrates is modelled using a
continuum approach and solved analytically to provide boundary conditions for the DNS.
The substrate configurations studied are selected using the information obtained from
a linear stability theory and the linearised theory of Luchini et al. (1991) and Jiménez
(1994) for drag reduction.

The paper is organised as follows. In §2 we discuss several models to characterise
the flow within the permeable substrates and present the analytic solution to the model
subsequently used, Brinkman’s model. How streamwise-preferential permeable substrates
can reduce drag is explained in §3, where we also discuss the theoretical models derived
by Abderrahaman-Elena & Garćıa-Mayoral (2017) and Gómez-de-Segura et al. (2018b).
The former provides estimates for the expected drag reduction in the linear regime, while
the latter bounds the achievable drag reduction based on linear stability theory. These
models allow us to select particular permeable substrates for the subsequent DNS study.
Details for the DNS setup are presented in §4. In §5, we present the DNS results for
the permeable substrates selected and assess the validity of the theoretical models. Drag
reduction curves for different anisotropic permeable substrates are also included, allowing
to define design guidelines for optimal substrate configurations. Finally, conclusions are
summarised in §6.

2. Flow within the permeable substrate

Following Abderrahaman-Elena & Garćıa-Mayoral (2017) and Gómez-de-Segura et al.
(2018b), we focus on permeable materials where the pores are much smaller than
any near-wall turbulent lengthscale. We therefore opt for a macroscopic, homogenised
approach to model the flow within the permeable medium, due to the high resolution
required otherwise to explicitly resolve the flow within the pores. The permeable medium
is modelled as homogeneous, by defining a local, instantaneous average solution of the
flow within the fluid-solid matrix.

A classical approach to characterise the homogenised flow within a permeable medium
is Darcy’s equation (Darcy 1856). This is the simplest model amongst the contin-
uum approaches, and results from a volume average of the Stokes equation over many
pores/particulate obstacles. Note that under the assumption of vanishingly small pore
size, such averages could still be conducted in small volumes compared to the scales of
the overlying flow. Darcy’s equation is a balance between the driving pressure gradient
across the permeable medium and the resistance to the flow exerted by the solid matrix.
More sophisticated continuum approaches used in the literature include homogenisation
techniques (Zampogna & Bottaro 2016; Lācis & Bagheri 2017; Bottaro 2019) or the
Volume Averaged Navier-Stokes equations (VANS) (Whitaker 1996; Ochoa-Tapia &
Whitaker 1995b,a). Several authors have recently used the latter to study flows over
permeable substrates (Breugem et al. 2006; Tilton & Cortelezzi 2008; Rosti et al. 2015).

The volume average implicit in Darcy’s equation accounts for the viscous stresses
caused by velocity gradients over lengths smaller than the averaging one. This effectively
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Figure 1. (a) General layout throughout the present work. (b) Detail of the macroscale flow
within the substrate. (c) Detail of the microscale flow within the substrate.

filters out diffusive effects acting over larger lengthscales. If the latter are relevant, they
can be accounted for by including a macroscopic diffusive term, yielding Brinkman’s
equation (Brinkman 1947),

∇p = −νK−1u + ν̃∇2u. (2.1)

The first two terms in equation (2.1) constitute Darcy’s equation, and the last term,
ν̃∇2u, is the Brinkman term, with u the velocity vector averaged over the total averaging
volume, p the kinematic pressure averaged over the fluid-phase in the volume, and ν
and ν̃ the molecular and the effective macrocopic viscosity, respectively. This approach
has been used by several authors to model the flow within permeable substrates and
canopies (James & Davis 2001; Battiato 2012, 2014; Battiato & Rubol 2014; Rubol
et al. 2018). The homogenised flow within the permeable substrate and the different
lengthscales accounted for by the various terms in equation (2.1) are illustrated in
figure 1. Panel (c) portrays the flow between the obstacles, which results in Darcy’s
equation when averaged, while panel (b) portrays the large scale diffusion missed by the
volume averaging and captured by the Brinkman term. Brinkman’s model is suitable for
substrates made up of open matrices of obstacles, such as that sketched in figure 2(a),
where fluid regions are significantly interconnected and diffusion can act efficiently over
large scales. However, it does not represent correctly substrates made up of microducts
essentially isolated from each other, such as that sketched in figure 2(b), where diffusion
cannot act over scales larger than the pores (Lévy 1983; Auriault 2009). Abderrahaman-
Elena & Garćıa-Mayoral (2017) used this distinction to characterise substrates as ‘highly
connected’ or ‘poorly connected’, and argued that the former offered better properties
for drag reduction. Furthermore, for the small values of permeabilities considered in
this study, the flow within the substrate would be dominantly viscous. In this scenario,
Brinkman’s model provides a simple but reasonable approximation. We therefore follow
Abderrahaman-Elena & Garćıa-Mayoral (2017) and Gómez-de-Segura et al. (2018b) and
use Brinkman’s equation to model the flow within the substrate. For larger permeabilities,
the advective effects would also become important, giving rise to form drag around the
obstacles in the permeable matrix. These effects could be considered through the addition
of a Forchheimer term (Forchheimer 1901; Joseph et al. 1982; Whitaker 1996).

In highly connected substrates, under certain assumptions Brinkman’s model allows to
capture the interfacial region that forms immediately below the substrate-fluid interface.
This equation is also a volume averaging model, so it implicitly assumes that any small
volume within the substrate contains a large number of obstacles. However, as the
averaging volume approaches the interface with the free flow, this assumption would
eventually cease to hold. The specialised literature shows no general agreement regarding
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Figure 2. Conceptual sketches of (a) a highly connected material, where the interstitial flow is
well interconnected and diffusion effects can propagate throughout, and (b) a poorly connected
permeable material, where no diffusive effects connect different pores. The red arrow represents
the direction of the overlying flow.

the treatment of the substrate-fluid interface (Lācis & Bagheri 2017; Zampogna & Bottaro
2016; Ochoa-Tapia & Whitaker 1995a; Le Bars & Worster 2006). Some studies impose
jump conditions of different types, such as a jump in velocity (Beavers & Joseph 1967),
a jump in shear stress (Ochoa-Tapia & Whitaker 1995a), or continuity of both velocity
and shear stress (Neale & Nader 1974; Vafai & Kim 1990; Battiato 2012, 2014). Other
studies define an adaptation region where the permeability transitions smoothly from
its value within the substrate to infinity in the free flow (Le Bars & Worster 2006;
Breugem et al. 2006). For simplicity, here we assume that pores are infinitely small, so
the continuum hypothesis would hold for any vanishingly small volume, and Brinkman’s
equation remains valid near the interface (Vafai & Kim 1990).

2.1. Analytic solution of Brinkman’s equation

In the present work we consider channels of height 2δ delimited by two identical
anisotropic permeable substrates of thickness h, as sketched in figure 1. The substrate-
channel interfaces are located at y = 0 and y = 2δ, and the substrates are bounded
by impermeable walls at y = −h and y = 2δ + h. Throughout the paper we will
refer to the free-flow region between y = 0 and y = 2δ as the ‘channel’ and to the
permeable regions below y = 0 and above y = 2δ as the ‘substrates’. The flow within
the permeable substrates is modelled using equation (2.1), where the fluid density ρ is
assumed to be unity for convenience. The simplicity of Brinkman’s equation allows to
solve it analytically, and the particularised solution at the substrate-channel interfaces
can be implemented as boundary conditions for the DNS of the channel flow, fully
coupling the flow in both regions. The procedure to solve Brinkman’s equation is detailed
in Appendix A. Here only the problem formulation and its solution are presented.

As discussed above, poorly connected substrates have negligible macroscale viscous ef-
fects, which in equation (2.1) can be interpreted as having ν̃ = 0, recovering Darcy’s equa-
tion. Highly connected substrates, in turn, would asymptotically tend to a macroscale
diffusion as efficient as in a free flow, ν̃ ≈ ν (Tam 1969; Lévy 1983; Neale & Nader 1974;
Abderrahaman-Elena & Garćıa-Mayoral 2017). Abderrahaman-Elena & Garćıa-Mayoral
(2017) and Gómez-de-Segura et al. (2018b) suggested that such materials would have a
better potential for drag reduction, as it will be discussed in §3. Here we follow them
and assume ν̃ = ν. The permeable substrates are characterised then by their thickness,
h, and their permeabilities Kx, Ky and Kz in the streamwise, x, wall-normal, y, and
spanwise, z, directions, respectively, which are assumed to be the principal directions of
the permeability tensor K in equation (2.1). The tensor has dimensions of length squared,
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and is a measure of the ability of the fluid to flow through the permeable medium. When
K →∞ the medium offers no resistance to the flow, and when K = 0 an impermeable
medium is recovered.

Let us consider the lower substrate between y = −h and y = 0. To solve equation (2.1),
we impose no slip and impermeability at y = −h, and continuity of the tangential and
normal stresses at the substrate-channel interface, i.e. at y = 0. The solution within the
substrate is coupled to the flow within the channel by imposing the continuity of the
three velocity components. The resulting boundary conditions at y = 0 are then

ν

[
∂u

∂y
+
∂v

∂x

]
y=0+

= ν̃

[
∂u

∂y
+
∂v

∂x

]
y=0−

, (2.2a)

ν

[
∂w

∂y
+
∂v

∂z

]
y=0+

= ν̃

[
∂w

∂y
+
∂v

∂z

]
y=0−

, (2.2b)[
−p+ 2ν

∂v

∂y

]
y=0+

=

[
−p+ 2ν̃

∂v

∂y

]
y=0−

, (2.2c)

where y = 0+ and y = 0− correspond to the channel and the substrate sides of the
interface, respectively. Under the above assumptions, the boundary conditions (2.2) can
be further simplified. The continuity of tangential stresses becomes that of ∂u/∂y and
∂w/∂y, and the continuity of normal stresses that of p. Equation (2.1) is then solved by
taking Fourier transforms in the tangential directions (x, z). Following the derivations
presented in Appendix A, the analytic solution particularised at y = 0 provides the
following expressions for the velocities,

û|y=0+ = û|y=0− = Cuu
dû

dy

∣∣∣∣
y=0+

+ Cuw
dŵ

dy

∣∣∣∣
y=0+

+ Cupp̂|y=0+ , (2.3a)

ŵ|y=0+ = ŵ|y=0− = Cwu
dû

dy

∣∣∣∣
y=0+

+ Cww
dŵ

dy

∣∣∣∣
y=0+

+ Cwpp̂|y=0+ , (2.3b)

v̂|y=0+ = v̂|y=0− = Cvu
dû

dy

∣∣∣∣
y=0+

+ Cvw
dŵ

dy

∣∣∣∣
y=0+

+ Cvpp̂|y=0+ , (2.3c)

where the hat denotes variables in Fourier space. The coefficients Cij are complex and
depend on the structure of the permeable substrate through Kx, Ky, Kz and h, as well
as on the overlying flow through the streamwise and spanwise wavenumbers, αx and αz,
or the corresponding wavelengths, λx = 2π/αx and λz = 2π/αz. The same procedure
can be used to obtain a symmetric solution for the upper substrate, and the resulting
expressions for the interface at y = 2δ can be found in Appendix A. The effect of the
permeable substrates on the channel flow is introduced through equations (2.3) and the
corresponding equations at y = 2δ, which serve as boundary conditions.

To illustrate how the coefficients in equation (2.3) vary with the wavelengths, figure 3
shows maps of C+uu, C+ww and C+vp, which have zero imaginary part, as a function of
λ+x and λ+z for a particular substrate. The superscript ‘+’ denotes viscous units, where
magnitudes are normalised using the kinematic viscosity, ν, and the friction velocity
at the substrate-channel interface, uτ =

√
τw. Note that the stress τw includes both

the viscous and the Reynolds stresses. C+uu and C+ww relate the streamwise and spanwise
velocities with their corresponding wall-normal gradients, respectively, and are connected
to the slip boundary conditions typically used in slip-only simulations (Hahn et al. 2002;
Min & Kim 2004; Busse & Sandham 2012). C+vp represents an impedance relating the
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Figure 3. Maps of (a) C+uu, (b) C+ww and (c) −C+vp, from equation (2.3), as a function of the

wavelengths λ+
x and λ+

z for substrate C4 in table 2.

wall-normal velocity and the pressure (Jiménez et al. 2001). The slip coefficients C+uu
and C+ww are purely real, so the tangential velocity is in phase with the tangential shear.
The transpiration coefficient C+vp is also real but negative, so the wall-normal velocity
is in anti-phase with the pressure. For the mean flow, i.e α+

x = 0 and α+
z = 0 (or

alternatively λ+x → ∞ and λ+z → ∞), out of the 9 coefficients from equation (2.3) only
C+uu and C+ww are non-zero. Their value decreases as the wavelengths decrease, as shown
in figure 3. In contrast, the transpiration coefficient C+vp is zero for the mean flow and
becomes increasingly negative as the wavelengths decrease, as smaller eddies penetrate
more easily through the substrate. In Gómez-de-Segura et al. (2018b), we conducted
preliminary DNSs where only these three coefficients from equation (2.3) were included.
This could, however, not capture the complete physics. The DNSs presented here in §5
show that the other coefficients modulate the results, and this modulation can become
significant as permeabilities increase.

3. Theoretical models

In this section, we use the theoretical models introduced by Abderrahaman-Elena
& Garćıa-Mayoral (2017) and Gómez-de-Segura et al. (2018b) to estimate the drag
reduction that permeable substrates can achieve, and based on that, select the substrate
configurations for the subsequent DNSs. We also discuss the effect on internal and
external flows, and how they relate.

3.1. Drag reduction from surface manipulations

The friction coefficient, cf , can be defined as

cf = 2
τw
U2
δ

= 2
1

U+2
δ

, (3.1)

where the density is assumed to be unity. The choice on the reference velocity Uδ depends
on the type of flow studied. In external flows, the free stream velocity is typically used,
while in internal flows the bulk velocity is more common. The substrates studied here
would mainly be aimed at external flow applications, for instance, as coatings in vehicle
surfaces. The simulations, however, have been conducted in channels for simplicity. In
this framework, Garćıa-Mayoral & Jiménez (2011) argued that choosing the centreline
velocity as the reference for cf permitted a closer comparison with external-flow friction
coefficients.

In the case of small surface textures, their effect is confined to the near-wall region.
According to the classical theory of wall turbulence, sufficiently far away from the wall,
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Figure 4. Drag reduction, DR, as a function of ∆U+, as given by equation (3.2), for different
friction Reynolds numbers. DR has been calculated using the centreline velocities of the smooth
channels in Lee & Moser (2015), Hoyas & Jiménez (2006) and Lozano-Durán & Jiménez (2014).
Blue to red, δ+ ≈ 180, 540, 1000, 1990, 5180. The arrow indicates increasing friction Reynolds
number.

the only effect of any surface manipulation is to modify the intercept of the logarithmic
law, while the Kármán constant and the wake function remain unaltered (Clauser 1956).
The centreline velocity is then U+

δ = U+
δ0 + ∆U+, where the subscript ‘0’ indicates

values for a reference smooth channel and ∆U+ is the shift of the velocity profile in the
logarithmic region and above with respect to the smooth wall. The drag reduction (DR)
can then be expressed in terms of ∆U+,

DR = −cf − cf0
cf0

= 1− 1(
1 +∆U+/U+

δ0

)2 . (3.2)

If ∆U+ > 0, the logarithmic region is shifted upwards and drag is reduced. Conversely, if
∆U+ < 0, the logarithmic region is shifted downwards and drag is increased. Note that
DR depends weakly on the friction Reynolds number, δ+, through U+

δ0, while ∆U+ does
not. Thus, a fixed surface texture in viscous units (with fixed K+

x , K+
y , K+

z and h+ in our
case) would result in the same ∆U+ independently of δ+. ∆U+ provides therefore a more
universal measure, as it can be extrapolated to higher δ+ (Garćıa-Mayoral & Jiménez
2011; Spalart & McLean 2011; Gatti & Quadrio 2016; Garćıa-Mayoral et al. 2019). The
change of DR with ∆U+ given by equation (3.2) and its dependence with δ+ are depicted
in figure 4. This figure shows a decrease of DR with the Reynolds number, due to larger
values of U+

δ0. This can be expected to lead to discrepancies in DR between simulations
and experiments at low Reynolds numbers, and industrial applications at high Reynolds
numbers. To circumvent this, in the present paper we quantify drag reduction in terms
of ∆U+.

3.2. Drag reduction from virtual origins

Drag reduction from non-smooth, passive surfaces has recently been reviewed in
Garćıa-Mayoral et al. (2019) as a virtual-origin effect for vanishingly small surface
textures. The reduction of drag is essentially caused by an offset between the positions
of the virtual, equivalent smooth walls perceived by the mean flow and the overlying
turbulence, which remains otherwise smooth-wall-like (Luchini et al. 1991; Jiménez 1994;
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Luchini 1996; Gómez-de-Segura et al. 2018b). ∆U+ is then

∆U+ ≈ `+U − `
+
T . (3.3)

The coefficient `+U refers to the depth of the virtual origin perceived by the mean flow,
i.e. the depth below a reference plane where the mean flow perceives an apparent non-
slipping wall, y+ = −`+U . Conversely, `+T refers to the depth of the virtual origin perceived
by turbulence, y+ = −`+T . Note that these virtual origins are measured from a reference
plane, which for the permeable substrates studied here is taken at the substrate-fluid
interface plane, y = 0. Luchini (1996) suggested that the virtual origin for turbulence
could be identified as the origin experienced by the quasi-streamwise vortices. If `+T < `+U ,
quasi-streamwise vortices are, compared to a smooth wall, shifted farther away from the
origin of the mean flow, y+ = −`+U . As a result, the local momentum flux close to the
surface decreases, thereby reducing the shear and the skin friction. Conversely, if `+U < `+T ,
the vortices perceive a deeper origin than the mean flow and friction drag increases.

Luchini et al. (1991) and Luchini (1996) proposed that the virtual origins of the mean
flow and that of turbulence are set by those for the streamwise and spanwise velocities,
respectively, i.e. `+U ≈ `+x and `+T ≈ `+z . Given that for small surface textures the velocity
profile near the surface is linear, the effect of complex surfaces on the overlying flow is
generally characterised by tangential Robin boundary conditions at the reference plane,
u+|y+=0 = `+x ∂u/∂y

+|y+=0 and w+|y+=0 = `+x ∂w/∂y
+|y+=0, where the Robin coefficients

`+x and `+z are typically referred to as the streamwise and spanwise slip lengths and are
roughly equal to the depths of the virtual origins. In addition, the mean streamwise shear
is dU+/dy+|y+=0 ≈ 1 and the slip length, `+x , is interchangeable with the slip velocity,
U+
slip.
The above Robin boundary conditions are generally used in slip-only simulations, such

as in Min & Kim (2004) or Busse & Sandham (2012). In these simulations, however, the
adverse effect of `+z on ∆U+ saturates for relatively small values of `+z , and the linear
expression ∆U+ ≈ `+x − `+z is valid only for `+z . 1. Gómez-de-Segura et al. (2018a)
noted that this saturation effect is a result of the impermeability condition imposed at
the interface, v = 0, as the imposed impermeability impedes the displacement of the
quasi-streamwise vortices further towards the interface. This effect would be present
in the drag-reducing simulations of Hahn et al. (2002) and Rosti et al. (2018), which
considered zero or very low values of wall-normal permeabilities, so that v ≈ 0 at the
interface. This would not be the case for the permeable substrates in general, or for those
studied in this paper in particular. For the DNSs presented in §5, we consider equal wall-
normal and spanwise permeabilities, K+

y = K+
z . The slip in the spanwise direction is then

always accompanied by a corresponding wall-normal transpiration, and the virtual origin
perceived by turbulence is roughly given by `+T ≈ `+z , with no saturation effect. For a
more general case where K+

z 6= K+
y , however, we can expect `+T 6= `+z (Gómez-de-Segura

et al. 2018a; Garćıa-Mayoral et al. 2019).
Abderrahaman-Elena & Garćıa-Mayoral (2017) derived analytical expressions for the

streamwise and spanwise slip lengths caused by a permeable substrate. The authors
calculated `+x and `+z by solving Brinkman’s equation (2.1) in response to an overlying
homogeneous shear. This is the solution for mode zero (αx = 0, αz = 0) in Appendix A,
with `+x and `+z being the coefficients C+uu and C+ww. The slip lengths are then

`+x = ξ
√
K+
x tanh

(
h+√
K+
x

)
, `+z = ξ

√
K+
z tanh

(
h+√
K+
z

)
, (3.4)

where ξ is the ratio between the molecular and effective viscosities of the permeable
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substrate. The expression for ∆U+ can be obtained by introducing these slip lengths
into equation (3.3). The microstructure of the substrate, represented by ξ, has therefore
an important effect on the drag-reducing performance. The optimum configuration would
be obtained for highly connected materials with ξ ≈ 1 (i.e. ν̃ ≈ ν), which justifies our
previous assumption in §2.1. Abderrahaman-Elena & Garćıa-Mayoral (2017) concluded
that the highest performance for a given anisotropic material would be achieved for
sufficiently deep substrates. For the purpose of the present paper, a substrate can be
understood to be ‘deep’ when the overlying flow decays exponentially before reaching

the bottom impermeable wall (see appendix A), i.e. h+ &
√
K+
x and h+ &

√
K+
z , and

‘shallow’ when the overlying flow penetrates all the way to the bottom. An analogous
definition of deep and shallow substrates based on asymptotic analysis has been proposed
by Battiato (2012). For deep substrates, both hyperbolic tangents in equation (3.4) tend

to unity and the slip lengths become `+x ≈
√
K+
x and `+z ≈

√
K+
z . Introducing these

results into equation (3.3), ∆U+ becomes

∆U+ ≈
√
K+
x −

√
K+
z . (3.5)

To maximise drag reduction, we are thus interested in highly anisotropic materials with
large K+

x and small K+
z .

The linear theory that results in equation (3.5) is valid only if the texture lengthscales
are small compared to the characteristic lengthscales of near-wall turbulence, so that the
near-wall cycle is not altered. Thus, only when the pore size is vanishingly small can the
effect of the substrates be reduced to a slip effect, as given by equation (3.5). If the pore
size is comparable to the turbulent eddies, the granularity effect of the texture would be
significant and this rough-like effect would give rise to an increase in drag.

For a given permeable material (i.e. with fixed permeability values Kx, Kz and Ky),
the permeabilities in viscous units, K+

x and K+
z , would increase as the friction Reynolds

number increases, and so would their difference and, from equation (3.5), ∆U+. This
would find a limit when the granularity effects set in. There are, however, other degrading
mechanisms that can set in even earlier, as the one discussed in §3.3.

3.3. Onset of Kelvin-Helmholtz rollers

Equation (3.5) does not explicitly include the wall-normal permeability, or transpira-
tion in general. However, most complex surfaces that produce slip produce also a non-zero
wall-normal velocity at the reference plane, such as permeable substrates (Breugem &
Boersma 2005), riblets (Garćıa-Mayoral & Jiménez 2011) or superhydrophobic surfaces
(Seo et al. 2018), and this effect induces generally a degradation in drag. Abderrahaman-
Elena & Garćıa-Mayoral (2017) and Gómez-de-Segura et al. (2018b) suggested that the
onset of the Kelvin-Helmholtz instability discussed in the introduction would disrupt the
linear regime of equation (3.5), and could therefore be used to establish an a priori limit
for its range of validity.

In Gómez-de-Segura et al. (2018b), we developed a model based on a linear stability
analysis around a mean turbulent profile to capture the onset of Kelvin-Helmholtz rollers,
following Jiménez et al. (2001), Garćıa-Mayoral & Jiménez (2011) and Abderrahaman-
Elena & Garćıa-Mayoral (2017). For streamwise-preferential, highly connected substrates,
we proposed an empirically-fitted parameter to capture the effect of the substrate
topology on the amplification of the instability,

K+
Br = K+

y tanh

(√
2K+

x

9

)
tanh2

 h+√
12K+

y

 . (3.6)
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Figure 5. Maximum amplification, ω+
i,max, versus the permeability lengthscale

√
K+
Br for

different permeable substrates. – – –, h+ = 10; ——, h+ = 100; from blue to red, anisotropy
ratios increase as φxy =

√
Kx/Ky ≈ 1, 3, 10, 30. The shaded region corresponds to the

estimated range for the onset of Kelvin-Helmholtz rollers (K-H), with the dashed-dotted lines

corresponding to
√
K+
Br ≈ 1 and 2.2.

Figure 5 shows how the maximum amplification for different substrates, ωi,max, is
essentially a function of K+

Br only. In the cases of interest, sufficiently deep substrates

with h+ &
√
K+
x �

√
K+
y and

√
K+
x & 5, we have

K+
Br ≈ K

+
y . (3.7)

Hence, the amplification of the instability is mainly determined by K+
y , and h+ and K+

x

have only a secondary effect.
Depending on the value of K+

Br, we distinguish three regimes for the instability, as

shown in figure 5: a low-permeability regime,
√
K+
Br . 1, where the instability would be

weak and not expected to emerge in the flow; a high-permeability regime,
√
K+
Br & 2.2,

where the amplification approaches an asymptote and the instability would be fully
developed; and an intermediate regime, where the instability would set in. Garćıa-Mayoral
& Jiménez (2011) found that, for riblets, the instability sets in for amplifications of
approximately half the maximum. Following this, we hypothesised that the intermediate

regime would occur for
√
K+
y ≈

√
K+
Br ≈ 1 − 2.2, so the linear drag reduction of

equation (3.5) could only hold for lower values of
√
K+
y . This hypothesis will be re-

assessed based on the present DNS results in §5.4.

3.4. Theoretical prediction of drag-reducing curves

Combining the information on the linear drag reduction regime of equation (3.5) and

the range of
√
K+
y for the onset of Kelvin-Helmholtz rollers, the trend of the drag

reduction curves for anisotropic permeable substrates can be estimated (Abderrahaman-
Elena & Garćıa-Mayoral 2017; Gómez-de-Segura et al. 2018b). An optimal substrate

should seek to maximise the difference
√
K+
x −
√
K+
z to obtain a large slip effect, while

maintaining
√
K+
y as low as possible to inhibit the appearance of Kelvin-Helmholtz

rollers. Fibrous substrates as those proposed in figure 2(b), for instance, would conform
such a material.

A substrate configuration can be represented by three dimensionless parameters; the
anisotropy ratios φxy =

√
Kx/Ky and φzy =

√
Kz/Ky, and the dimensionless thickness,
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Figure 6. (a) Sketch of the predicted ∆U+ as a function of
√
K+
y . Each line corresponds to

a substrate with a different anisotropy ratio, φxy =
√
K+
x /K

+
y , and follows the behaviour of

the linear expression (3.8). The shaded region corresponds to the permeability values for which
the Kelvin-Helmholtz rollers would be expected to develop, as in figure 5. (b) Predicted values
of ∆U+ using the linear expression (3.8) as a function of the anisotropy ratio φxy. In both
panels, the dashed-green and solid-red lines define the limits for the onset of Kelvin-Helmholtz

rollers estimated at
√
K+
Br|lim ≈

√
K+
y ≈ 1 and 2.2, and they separate three regions: the

empty-colored one, where no Kelvin-Helmholtz instability would be expected; the shaded one,
where the instability would set in; and the hatched one, where the instability would be fully
developed. Symbols represent the DNS cases studied in §5 for three substrates with different
anisotropies, from red to blue φxy ≈ 3.6, 5.5 and 11.

h/
√
Ky . Given that both K+

y and K+
z have an adverse effect on the drag, in what follows

we consider materials with preferential permeability in x and equally low permeabilities
in y and z, K+

x > K+
z = K+

y . This implies φxy > 1 and φzy = 1. In addition, we

consider deep substrates with large h/
√
Ky , so that the substrate thickness does not

affect the overlying flow. In §5, we study substrates with
√
K+
x . 10, for which a thickness

h+ & 50 would suffice. In practical aeronautic applications, for instance, this would imply
permeable layers with sub-millimetre thickness.

For substrates with φzy = 1, the expression for ∆U+ in equation (3.5) can be rewritten
as

∆U+ = (φxy − 1)

√
K+
y . (3.8)

The drag reduction for a given substrate configuration (i.e. for a fixed φxy) can then be

expressed solely as a function of the wall-normal permeability lengthscale,
√
K+
y , which

can be interpreted as a substrate Reynolds number, as sketched in figure 6(a). In a wind-

tunnel experiment, for instance,
√
K+
y could be changed by changing the friction velocity,

while φxy remained unaltered. From the present analysis, the resulting drag reduction
curves would be analogous to those for riblets (Bechert et al. 1997; Garćıa-Mayoral &

Jiménez 2011). The curves would exhibit a linear increase of ∆U+ with
√
K+
y , breaking

down no later than in the shaded region in the figure, where the onset of the Kelvin-
Helmholtz instability would be expected. According to equation (3.8), the slope in the
linear regime would depend on φxy, and the maximum ∆U+ for a given φxy would be
determined by the intercept of the corresponding curve with the shaded region. The exact

value of
√
K+
y for the breakdown, as well as the form of the curves in its proximity and

for larger permeabilities, will be obtained from DNSs in §5.
The ideas illustrated in figure 6(a) for a handful of substrate configurations can be
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(a) (b) (c)

Figure 7. Mean velocity in internal and external flows. The black-dashed line represents the
mean velocity profiles for smooth walls. (a) Boundary layer. (b) Channel flow, where the mean
pressure gradient is applied through the whole section of height 2(δ+h), including the permeable
substrates. (c) Artificial internal setup to produce only slip that appears in an external flow, by
not applying the mean pressure gradient in the substrate regions.

summarised for a wide range of anisotropy ratios, as is done in figure 6(b). Following a

drag reduction curve as
√
K+
y increases in figure 6(a) would be equivalent to ascending

vertically along a constant-φxy line in figure 6(b). The linear drag-reducing behaviour of
equation (3.8) is expected to begin to fail in the shaded region, determined by introducing

the limiting values of
√
K+
y from §3.3,

√
K+
y |lim ≈ 1− 2.2, into equation (3.8). Although

additional adverse phenomena cannot be ruled out, figure 6(b) allows us to bound the
parameter space for realisable drag reduction. This figure has been used to select the
region in the parametric space subsequently investigated in §5. We have considered three
substrate configurations, φxy ≈ 3.6, 5.5 and 11.4, represented by the three vertical
lines of symbols in figure 6(b), and simulated them at different substrate Reynolds

numbers,
√
K+
y , so that complete drag reduction curves could be obtained. Most cases

were designed to lie in the drag-reducing region, where equation (3.8) would be expected
to hold, with a few lying in the degraded region.

3.5. Change in drag in internal and external flows

The expressions for ∆U+ of equations (3.3), (3.5) and (3.8) are valid only for external
flows with mild or zero pressure gradients, where the flow near the wall is essentially
driven by the overlying shear and the effect of the mean pressure gradient within the
permeable substrate is negligible. We are mainly interested in vehicular applications,
where the flow falls into that category, but for completion let us discuss the differences
with internal flows. In the latter, the effect of the mean pressure gradient could be
significant. This effect is essentially additive, so in the following discussion we will leave
out turbulence for simplicity, and consider the laminar case. A similar analysis was
proposed by Battiato (2014).

Sketches of the mean velocity profiles in a boundary layer and in a channel are depicted
in figures 7(a) and 7(b), respectively. In a boundary layer over a permeable substrate,
there would be a slip velocity at the interface, UBr, due solely to the formation of a
Brinkman layer within the substrate. It follows from equation (3.4) that, provided that

the substrate is sufficiently deep, this slip velocity is U+
Br ≈

√
K+
x . Compared with a

smooth wall, the only change in the mean velocity profile would be a shift by UBr, that

is, ∆U+ ≈
√
K+
x , and the drag reduction experienced would arise entirely from this slip

effect.
In channel flows, there are two limiting forms of applying the permeable substrates to

the reference smooth channel of height 2δ. They can substitute a layer of solid material,
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increasing the height to 2(δ + h), or they can be placed on top of the reference smooth
channel, reducing the free flow area. In the first case, depicted in figure 7(b), the mean
pressure gradient acts on the region 2(δ + h), which includes the permeable substrates.
This produces two opposite effects on the drag: a positive effect due to an increment in
the flow rate, not only within the substrate but also in the channel core, and a negative
effect due to the pressure gradient being applied across a larger cross-section. In order
to evaluate these two effects, we compare the friction coefficient for the permeable and
the smooth channel under equal mean pressure gradient Px. The integral force balance
yields

τw = −Px (δ + h) , (3.9)

where τw accounts for the net force applied on the substrates. As we are now solely
considering internal flows, we use the conventional bulk velocity, Ub, to define cf ,

cf = 2
τw
U2
b

= 2
τw

(Ub0 +∆Ub)
2 = cf0

1 + h/δ

(1 +∆Ub/Ub0)
2 = cf0

(1 + h/δ)
3

(1 +∆q/q0)
2 , (3.10)

where the subscript ‘0’ refers to the smooth channel. The friction coefficient of the smooth
channel is defined as cf0 = −2Pxδ/Ub0, and q = 2(δ + h)Ub is the mass flow rate. The
opposing effects of the increase in cross-section where the pressure gradient acts, 2h, and
the extra flow rate, ∆q, are evidenced in equation (3.10). The result can be either a drag
reduction or a drag increase depending on the values of ∆q and h. A similar conclusion
was obtained by Battiato (2014), although the friction coefficient was defined based on
the tangential shear at the interface y = 0 (or alternatively on the pressure gradient
acting only in the channel core y ∈ [0, 2δ]), and the bulk velocity considered was that of
the whole domain, including the substrates.

The extra flow rate, ∆q, can be expressed in terms of Kx. From figure 7(b), ∆q is

∆q ≈ 2δ (UBr + UDarcy) + 2qsubstrate, (3.11)

where, in addition to the slip velocity caused by the overlying shear, UBr, as in figure 7(a),
there is an extra slip velocity caused by the mean pressure gradient, UDarcy, and
a resulting extra flow rate within the substrate, qsubstrate. The former is obtained
from Darcy’s law, UDarcy = −PxKx/ν, and qsubstrate is obtained using UDarcy and
Brinkman’s velocity within the substrate, as defined by expression (A 27a). Substituting
expression (3.11) into equation (3.10), the resulting change in cf depends on

√
Kx/h, h/δ

and the Reynolds number. This dependency for a friction Reynolds number δ+ = 180 is
illustrated in figure 8. The figure shows how the beneficial effect of adding a streamwise
permeability is opposite to the deleterious effect of the increased area and, for certain
substrate geometries, can even outweigh it, resulting in a net drag reduction. Note that
in the turbulent case, the effect of the spanwise, Brinkman contribution would also need
to be included, as given by equation (3.5).

To better understand the relationship between Kx and h, expression (3.10) can be
simplified further for δ � h &

√
Kx. The extra flow rate is then dominated by ∆q ≈

2δUBr ≈ 2δ
√
Kx dU/dy|y=0, and in a first order approximation, equation (3.10) simplifies

to

cf ≈ cf0
1 + 3h/δ

1 +
2
√
Kx

Ub0

dU

dy

∣∣∣∣
y=0

. (3.12)

It follows from this equation that, in (h,
√
Kx) parameter space, the isocontours of DR are

approximately oblique straight lines, as observed in figure 8. Specifically, the neutral drag
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drag reduction

drag increase

Figure 8. Map of DR = −∆cf/cf0 in an internal channel flow with permeable substrates
as a function of the permeability length,

√
Kx, and the thickness of the substrate, h, for a

friction Reynolds number δ+ = 180. The channel with substrates has a total height of 2(h+ δ),
and is compared to a smooth channel of height 2δ, as in figure 7(b). – – –, the first order
approximation of zero drag reduction line, with a slope of 0.15 obtained from equation (3.12)
(valid for h/δ > 0.01).

curve is
√
Kx = 3/2 Ub0/(dU/dy|y=0) h, which depends on the friction Reynolds number

through Ub0 and dU/dy|y=0. For δ+ = 180, the zero drag reduction line is given by
√
Kx ≈

0.15h, as indicated in figure 8, while for δ+ = 5000,
√
Kx ≈ 0.007h. Battiato (2014),

considering also the pressure gradient effect discussed in this section, concluded that a
given substrate configuration would achieve drag reduction at sufficiently high friction
Reynolds number, which is also how equation (3.12) can be interpreted. Nevertheless, as
mentioned before, the definition of the friction coefficient in Battiato (2014) was based
on the tangential shear at the substrate-channel interface, while the present one is based
on the net, total drag, that is, accounting for the pressure loss across the whole section
2(δ + h). The agreement can therefore only be established qualitatively.

The above analysis applies to channel flows where the permeable substrates substitute
a layer of solid material and shows that, in this case, drag can be either reduced or
increased. If, on the other hand, the permeable coating was added on top of an existing
smooth channel, the pressure gradient would still be applied over the whole height of
2δ, which includes the permeable coatings, and the resulting friction coefficient would be
cf = cf0/(1 + ∆q/q0)2. In this case, the flow rate would always decrease, i.e. ∆q < 0,
resulting in an increase of drag independently of the values of

√
Kx and h.

4. DNS setup

In this section, we present the numerical setup for direct numerical simulations of
the domain sketched in figure 7(c), a channel of height 2δ delimited by two identical
anisotropic permeable substrates. The presence of the substrates is taken into account
through the modelled boundary conditions defined by equation (2.3).

4.1. The numerical method

The channel flow is governed by the incompressible Navier-Stokes equations,
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∇ · u = 0, (4.1a)

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (4.1b)

where the density has been assumed to be unity for simplicity, p is the pressure, u =
(u, v, w) the velocity vector and Re the bulk Reynolds number defined as Re = Ubδ/ν,
with Ub being the bulk velocity in the channel region. The DNS code is adapted from
Garćıa-Mayoral & Jiménez (2011) and Fairhall & Garćıa-Mayoral (2018) and was already
used in Gómez-de-Segura et al. (2018b). It solves the incompressible Navier-Stokes
equations (4.1) in a doubly-periodic channel of height 2δ, where δ = 1 is the distance
between the substrate-channel interface and the centre of the channel. All simulations
are conducted at a fixed friction Reynolds number δ+ = uτδ/ν = 180 by imposing a
constant mean pressure gradient in y ∈ [0, 2δ]. The kinematic viscosity is ν = 1/2870
and we use a smooth-wall channel with the same mean pressure gradient as reference.

Although for convenience the present DNSs are conducted in channels, our scope
of application is mainly external flows with mild pressure gradients. In a channel, in
comparison, there would be an additional flow rate from Darcy’s contribution discussed
in §3.5. To allow direct extrapolation to external flows, we simply do not include this
contribution when implementing the boundary conditions on the mean flow, that is, mode
(0, 0), which would be the only Fourier mode affected. This numerical artefact would be
equivalent to applying the mean pressure gradient in the channel region only, as depicted
in figure 7(c). The drag reduction in the present simulations results then entirely from
the slip velocity due to an overlying shear, as in external flows.

The spatial discretisation is spectral in the wall-parallel directions x and z, with 2/3
rule de-aliasing, and uses second-order centred finite differences on a staggered grid in the
wall-normal direction. The computational domain is of size 2π×π×2 in the streamwise,
spanwise and wall-normal directions, respectively, which is sufficient to capture the active
turbulent lengthscales up to the logarithmic region (Lozano-Durán & Jiménez 2014).
Spanwise-elongated structures, such as those reported in §5, appear in this domain as
spanwise-homogeneous, but their dynamics are correctly captured (Garćıa-Mayoral &
Jiménez 2012). A grid with 192 × 192 × 153 collocation points with grid stretching is
used, which in viscous units gives a resolution of ∆x+ ≈ 5.9, ∆z+ ≈ 2.9, and ∆y+ ' 0.3
near the wall and ∆y+ ' 3 in the centre of the channel. For the temporal integration, a
Runge-Kutta discretisation is used, where every time-step is divided into three substeps,
each of which uses a semi-implicit scheme for the viscous terms and an explicit scheme
for the advective terms. Discretised this way, the Navier-Stokes equations in (4.1) result
in [

I −∆t βk
Re

L

]
uk = uk−1 +∆t

[αk
Re

L(uk−1)− γkN(uk−1)

− ζkN(uk−2)− (αk + βk) G(pk)
] (4.2)

where L, G and D represent the discretised laplacian, gradient and divergence operators,
respectively, and N represents the nonlinear, advective operator. The superscript k =
1, 2, 3 denotes the Runge-Kutta substep. Hence, the velocities u0 and u3 correspond to
the velocities at time-step n and n+ 1, respectively. Additionally, αk, βk, γk and ζk are
the Runge-Kutta coefficients for substep k from Le & Moin (1991). In equation (4.2),
the velocity at substep k is expressed in terms of the velocities at the previous substeps,
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as well as the pressure at that same substep k. To solve it, a fractional step method is
integrated in each substep (Le & Moin 1991).

The presence of the permeable substrates is accounted for by the boundary condi-
tions (2.3), and the coupling between the velocities and the pressure at the interface
is implemented implicitly. Following Perot (1993, 1995), the discretised incompressible
Navier-Stokes equations from (4.2) can be represented in matrix form,[

A G
D 0

](
uk

pk

)
=

(
rk−1

0

)
, (4.3)

where uk and pk are the discrete velocity and pressure unknowns, respectively. A is the
operator containing the implicit part of the diffusive terms, which for the internal points
of the domain equation (4.2) gives A = [I −∆t βk

ReL], and the vector rk−1 is the explicit
right-hand side, which contains all the quantities from previous time-steps. The boundary
conditions given by equations (2.3) are embedded in the block matrices in equation (4.3).
Because the velocities and pressure are coupled, the matrices have critical differences with
those of Perot (1993). The relationships between the three velocities and the shears, dû/dy
and dŵ/dy, are embedded in A, while the coupling between the velocities and pressure is
embedded in A and G. Details on how this differs from the conventional fractional-step
method are given in Appendix C and in Gómez-de Segura (2019).

Taking the LU decomposition of system (4.3) results in[
A 0
D −DA−1G

] [
I A−1G
0 I

](
uk

pk

)
=

(
rk−1

0

)
(4.4)

and the operations are solved in the following order

Au∗ = rk−1, (4.5a)

DA−1Gpn+1 = Du∗, (4.5b)

uk = u∗ −A−1Gpk, (4.5c)

where the variable u∗ is an intermediate, non-solenoidal velocity. The Poisson equa-
tion (4.5b) is computationally expensive, as it requires the inversion of matrix A. For
efficiency, A−1 is generally approximated to its first order term, ≈ I (Perot 1993). In the
present work, we approximate the internal points in A by ≈ I, while keeping the rows of
A that contain the boundary conditions unchanged, and then invert the resulting matrix
to obtain A−1.

Statistics are obtained by averaging over approximately 100 eddy-turnovers, once the
statistically steady state has been reached. Statistical convergence was verified using the
criterion of Hoyas & Jiménez (2008).

4.2. Validation

We validate the present Brinkman model with one of the cases studied by Breugem
et al. (2006), where the authors used the VANS equations within the permeable substrate.
We consider their case E80, here referred to as BB E80, with a porosity ε = 0.8, which
refers to the ratio between the void volume and the total volume of the substrate, and
an isotropic permeability K+ ≈ 1. This permeability is of the same order of magnitude
as our largest permeabilities K+

y and K+
z in the DNSs presented in §5. The results of

BB E80 are compared to a simulation using our Brinkman model, here referred to as
BB Br, also with K+ ≈ 1. To match the validation domain in Breugem et al. (2006), we
use an asymmetric channel of height 2δ, delimited by an impermeable wall at the top
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Cases ε ν̃/ν δ+ K+ δw/δ δi/δ cf (×10−3) cf0(×10−3) ∆D

BB E80 0.8 - 203 1.14 1.12 0.04 10.41 8.19 27.15
BB Br - 1.0 204 1.19 1.11 - 10.34 8.07 28.06

Table 1. Characteristics of the simulations for VANS approach (BB E80) and Brinkman’s
(BB Br). Porosity, ε; viscosity ratio ν̃/ν; friction Reynolds number, δ+ = uτδ/ν; permeability,
K+ = Ku2

τ/ν
2; location of zero total stress, δw; friction coefficient, cf = 2(uτ/Ub)

2;
friction coefficient of the corresponding smooth channel, cf0 ; and change of drag defined as
∆D = (cf − cf0)/cf0 . Viscous units are defined with uτ measured at the interface plane y = 0.

Figure 9. Sketch of the channel of Breugem et al. (2006) used here for validation. The red
dashed-dotted line corresponds to the location of the interface plane used in the present analysis
for comparison with the analogous Brinkman model, BB Br.

and a permeable substrate at the bottom, as sketched in figure 9. The thickness of the
permeable layer is h = 2δ.

In the VANS simulation of Breugem et al. (2006), the porosity, and hence the per-
meability, evolved gradually from the inner value ε = 0.8 to the free flow value ε = 1
over a thin interfacial layer of thickness δi. This corresponded to the averaging volumes
in VANS capturing varying proportions of free flow and substrate, so that the volumes
centred at the top of the interfacial layer did not contain any substrate, and the volumes
centred at its bottom did not contain any free flow, as illustrated in figure 9. This can be
interpreted as VANS being applied on a setup with a sharp interface half-way through
the interfacial layer. We therefore set our reference plane y = 0 for BB E80 at this height,
so results from Breugem et al. (2006) are represented in the same frame of reference as
those for our Brinkman model. Note that in Breugem et al. (2006) the reference plane
was at the top of the interfacial region instead. For a consistent comparison, the results
from Breugem et al. (2006) have been rescaled with the friction velocity measured at the
present reference y = 0, and with the bulk velocity integrated between that plane and
the top, impermeable smooth wall.

Both BB Br and the original simulation of Breugem et al. (2006) were run at a constant
mass flow rate starting from a smooth channel, at Re = 2750 in the latter case and
Re = 2832 in ours. Defining viscous units using the friction velocity at y = 0, the initial
friction Reynolds numbers were δ+ = 176 and δ+ = 180, respectively, while in the final
statistically-steady state they were δ+ ≈ 204 and δ+ ≈ 203, respectively. Results from
Breugem & Boersma’s VANS approach (BB E80) and Brinkman’s model under study
(BB Br) are compared in table 1 and figure 10, all showing good agreement.

This agreement between VANS and Brinkman’s approach could be expected, given
the similarities between the models for the values of the parameters considered. VANS
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Figure 10. Comparison of a simulation from Breugem et al. (2006) using VANS (BB E80),
– – –, with a corresponding simulation using Brinkman’s model (BB Br), ——. The curves from
Breugem et al. (2006) are shifted by δi/2 to match the substrate-channel interface in both
setups. Black lines represent smooth-channel data for reference. (a) Mean velocity profile, (b)
rms velocity fluctuations, (c) Reynolds stress.

equations can be interpreted as Brinkman’s equation with the addition of the advective
and temporal terms, with ε playing in the former the role that ν/ν̃ plays in the latter.
For small permeabilities, such as those under consideration, the advective terms can be
neglected. In addition, an order of magnitude analysis shows that the temporal term
can also be neglected. This term is of the order ∼ O[uc/tc], where tc and uc denote a
characteristic time and velocity, respectively. When the substrate is isotropic and highly
connected (i.e. ν̃ ≈ ν), both the Brinkman and Darcy terms are of the same order
of magnitude, as the penetration length in an isotropic substrate is of order ∼

√
K.

Comparing the temporal and the Brinkman terms, we obtain

uc/tc
νuc/K

∼ K

νtc
=
K+

t+c
. (4.6)

For the temporal term to be negligible, the characteristic time should satisfy t+c > K+.
Considering that the fastest-evolving turbulent structures near the wall are typically
the quasi-streamwise vortices, with a radius r+ ∼ 15 and turnover velocity ∼ uτ , the
smallest characteristic timescale would be t+c ∼ 15, and given that K+ ∼ 1, the condition
t+c > K+ is satisfied. The flow within the permeable medium can then be assumed to
be quasi-steady. Additionally, for VANS and Brinkman’s equation to be equivalent, the
value of the porosity ε should be equal to the ratio ν/ν̃. In the simulations compared
here, these values differ slightly, with ε = 0.8 in BB E80 and ν/ν̃ = 1 in our model.
Nonetheless, Rosti et al. (2015) reported that, for porosity values ε & 0.6, a further
increase of ε had no significant effect on the overlying flow, and the permeability K was
the only relevant parameter. This justifies the similarities between the results of the two
models, even if the values of ε and ν/ν̃ are slightly different.

5. DNS results and discussion

In this section, we present the results from our simulations to investigate in detail
the effect that permeable substrates have on the overlying flow and assess the validity
of the predictions presented in §3. We study three substrate configurations, given by
three different anisotropy ratios φxy ≈ 3.6, 5.5, 11.4. For our main set of simulations,
the substrates have thickness h = 100

√
Ky , large enough for the problem to become

independent of h, and the same permeabilities in y and z, so that φzy = 1. An
additional subset of simulations was conducted to explore the effect of a finite h on the
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Cases
√
K+
x

√
K+
y

√
K+
z h+ Ub/Ubsm ∆U+ DR180 DR5000

Smooth 0 0 0 0 1.0 - - -

φxy =

√
Kx

Ky
≈ 3.6

A1 0.71 0.20 0.20 19.5 1.037 0.51 5.64 3.93
A2 1.00 0.28 0.28 28.1 1.045 0.68 7.26 5.08
A3 1.42 0.39 0.39 38.8 1.052 0.80 8.44 5.92
A4 1.74 0.48 0.48 48.1 1.041 0.54 6.10 4.25
A5 2.45 0.68 0.68 68.1 0.963 -0.68 -7.38 -4.99
A6 3.61 1.00 1.00 100.2 0.819 -3.02 -42.31 -26.58
A7 5.50 1.52 1.52 152.7 0.616 -6.59 -143.84 -76.46
A8 10.97 3.04 3.04 304.2 0.381 -11.03 -546.15 -194.20

φxy =

√
Kx

Ky
≈ 5.5

B1 1.00 0.18 0.18 18.0 1.053 0.84 8.63 6.06
B2 1.79 0.32 0.32 32.1 1.085 1.29 12.71 9.01
B3 2.12 0.39 0.39 39.0 1.086 1.31 12.93 9.17
B4 2.45 0.45 0.45 45.0 1.070 1.01 10.22 7.20
B5 3.61 0.66 0.66 65.7 0.979 -0.46 -5.24 -3.56
B6 5.48 1.00 1.00 100.0 0.792 -3.66 -56.35 -34.47
B7 10.89 1.99 1.99 198.4 0.517 -8.66 -261.34 -120.00

φxy =

√
Kx

Ky
≈ 11.4

C1 1.00 0.09 0.09 9.0 1.062 0.98 9.89 6.96
C2 1.73 0.15 0.15 14.0 1.106 1.67 16.01 11.45
C3 2.45 0.21 0.21 22.0 1.145 2.24 20.63 14.93
C4 3.6 0.32 0.32 32.0 1.178 2.84 25.10 18.38
C5 4.48 0.39 0.39 39.1 1.183 2.87 25.34 18.56
C6 5.47 0.48 0.48 47.9 1.152 2.34 21.38 15.50
C7 10.89 0.96 0.96 95.6 0.898 -2.21 -29.35 -18.92

h√
Kx

= 1.5

C′1 2.45 0.21 0.21 3.67 1.130 2.00 18.74 13.49
C′2 3.61 0.32 0.32 5.40 1.171 2.70 24.12 17.62
C′3 5.49 0.48 0.48 8.23 1.156 2.40 21.87 15.88
C′4 10.84 0.95 0.95 16.26 0.962 -0.90 -10.84 -7.27

h√
Kx

= 1.0

C′′1 3.61 0.32 0.32 3.61 1.154 2.42 22.02 15.99
C′′2 5.48 0.48 0.48 5.51 1.163 2.53 22.86 16.64
C′′3 7.01 0.62 0.62 7.01 1.127 1.90 17.93 12.88
C′′4 9.03 0.79 0.79 9.03 1.066 0.84 8.62 6.05
C′′5 10.85 0.95 0.95 11.03 1.001 -0.12 -1.32 -0.91

h√
Kx

= 0.5

C′′′1 2.45 0.21 0.21 1.22 1.063 0.93 9.46 6.65
C′′′2 3.62 0.32 0.32 1.86 1.091 1.36 13.35 9.48
C′′′3 5.47 0.48 0.48 2.74 1.133 2.04 19.11 13.77
C′′′4 7.01 0.62 0.62 3.50 1.153 2.39 21.81 15.83
C′′′5 9.03 0.79 0.79 4.52 1.129 1.95 18.34 13.19
C′′′6 10.83 0.95 0.95 5.42 1.092 1.30 12.88 9.13

Table 2. DNS parameters.
√
K+
x ,

√
K+
y and

√
K+
z are the streamwise, wall-normal and

spanwise permeability lengths, h+ is the thickness of the substrate, ∆U+ is the shift of the
velocity profile in the logarithmic region, and DR180 and DR5000 are the values of drag reduction
for δ+ = 180 and δ+ = 5000, respectively, obtained using expression (3.2). The values DR5000

have been calculated using the smooth-channel centreline velocity from Lee & Moser (2015).

The first three substrate configurations A, B and C have thickness h = 100
√
Ky and different

anisotropy ratios φxy. The last three substrate configurations, C′, C′′ and C′′′, have φxy ≈ 11.4,
same as substrate C, but different thickness h/

√
Kx.
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substrate performance. For a given configuration (i.e. a fixed φxy and h/
√
Ky), we vary

proportionately the permeabilities in viscous units, K+
x , K+

z and K+
y , which is equivalent

to varying the viscous length. For each configuration,
√
K+
x varies between 0.7− 11. The

simulations under study are summarised in table 2, where each case is labelled with a
letter and a number. In the main set of simulations, the letter refers to the anisotropy
ratio φxy of the substrate, and the number to increasing permeability Reynolds numbers,√
K+
x . In the secondary set, the subscripts ′, ′′ and ′′′ indicate decreasing substrate depth.

The virtual-origin model presented in §3 is based on the idea that the near-wall cycle
remains smooth-wall-like, other than by being displaced a depth `T towards the substrate.
Given that the origin perceived by turbulence is expected to be at y = −`T ≈ −

√
Kz,

throughout this section results are scaled taking that as the reference for the wall-normal
height. The friction velocity is obtained by extrapolating the total stresses to that height,

uτ = uτy=0

(
1 +
√
Kz/δ

)1/2
, and the effective half-height channel becomes δ′ = δ+

√
Kz

(Garćıa-Mayoral et al. 2019). The effect is, nevertheless, negligible for the small values
of
√
Kz/δ considered here. Beyond the breakdown of the linear regime, the virtual-origin

model begins to fail and the effect of the substrates can no longer be solely ascribed to a
shift in origins. Nonetheless, for the cases lying in the degraded regime, we still use the
virtual origin that would be valid in the linear regime, y = −

√
Kz, to measure uτ . In this

framework, any further effect can be interpreted as additive. The values of ∆U+ have
been obtained using this uτ and comparing with a smooth-wall velocity profile with the
origin shifted to y = −

√
Kz, although the effect of the shift on ∆U+ is also negligible.

5.1. Drag reduction curves

The drag reduction curves obtained from the main set of DNSs are shown in figure 11.
For small permeabilities, a linear drag-reduction regime is observed. In §3.2, we predicted
∆U+ in this regime to be equal to the difference between the virtual origin for the mean
flow, `+U , and that perceived by turbulence, `+T . For the substrates under consideration,

these would be `+U ≈
√
K+
x and `+T ≈

√
K+
z , as given by equation (3.5). This prediction

agrees well with the DNS results, and the three substrate configurations exhibit roughly
the same initial unit slope in figure 11(b). The breakdown of the linear drag reduction

regime, however, occurs for different values of
√
K+
x −
√
K+
z depending on the substrate.

In contrast, when the lengthscale is represented using
√
K+
y – the parameter predicted

in §3.3 to trigger the Kelvin-Helmholtz instability – the location of the breakdown
coincides for all the curves, as shown in figure 11(c). For all substrate configurations,

the drag reduction is maximum for
√
K+
y |opt ≈ 0.38 and the drag becomes greater than

for a smooth wall for
√
K+
y & 0.6.

The common linear drag reduction behaviour, observed in figure 11(b), and its common
breakdown, observed in figure 11(c), are condensed in figure 11(d). This is done by
dividing ∆U+ from figure 11(c) by the slope for each curve expected from equation (3.8),

φxy − 1. Given that in this equation ∆U+ depends only on φxy and
√
K+
y , the general

collapse suggested by this figure could be used to predict the performance of permeable
substrates different to those explored in this work. Considering that the maximum ∆U+

in figure 11(d) occurs for
√
K+
y |opt ≈ 0.38 and is approximately 80% of that estimated

by equation (3.8), the maximum ∆U+ would depend only on the anisotropy ratio,

∆U+
max ≈ 0.8× 0.38× (φxy − 1) . (5.1)

For substrates with different cross permeabilities, φzy 6= 1, it follows from equation (3.5)
that the maximum ∆U+ would be ∆U+

max ≈ 0.8× 0.38× (φxy − φzy).
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Figure 11. Drag reduction curves for substrates with different anisotropy ratios. ,
φxy ≈ 11.4; , φxy ≈ 5.5; and , φxy ≈ 3.6. The symbols correspond to DNSs listed in

table 2. ∆U+ is represented versus (a) the streamwise permeability lengthscale,
√
K+
x ; (b) its

predicted value in the linear regime,
√
K+
x −

√
K+
z ; (c) the wall-normal permeability lengthscale,√

K+
y . (d) ∆U+, reduced with its predicted slope, versus the wall-normal permeability

lengthscale,
√
K+
y . – – –, theoretical prediction ∆U+ =

√
K+
x −

√
K+
z .

The secondary set of simulations aims to explore the effect of the substrate depth on
∆U+ and to test if the performance could be improved by reducing the depth enough
for it to become a parameter in the problem. For this, the same substrate of cases C1-C7
is studied with depths h/

√
Kx = 1.5, 1.0, and 0.5. From equations (3.4), we can expect

shallower substrates to have smaller `+U and `+T , as the hyperbolic tangent terms become
smaller than unity. This would reduce the slope of the ∆U+ curve in the linear regime
and be an adverse effect. However, a reduced depth would also have the beneficial effect
of making the substrate more robust to the onset of Kelvin-Helmholtz-like rollers, as

at a given Reynolds number (i.e.
√
K+
x ,
√
K+
y ) equation (3.6) would predict a smaller√

K+
Br. Note also that

√
K+
Br is a parameter empirically fitted to the results from the

linear stability model, and that the actual results in §3.3 show that shallower substrates

have in fact a delayed onset in terms of
√
K+
Br, as shown in figure 5.

The results for ∆U+ for the shallow substrates of the secondary set of simulations
are portrayed in figure 12, compared with the corresponding deep substrate from the
main set, cases C1-C7. Given that all our substrates have higher permeability in x, the
first terms to experience the effect of a finite h in equations (3.4) and (3.6) are those
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Figure 12. Drag reduction curves for substrates with the same permeabilities but different
substrate thickness. From blue to red, representing decreasing thickness, cases C1-C7, C′1-C′7,
C′′1-C′′7, and C′′′1-C′′′7, corresponding to h/

√
Kx = 8.8, 1.5, 1.0, and 0.5. ∆U+ is

represented versus (a) its theoretical value in the linear regime; (b) the wall-normal permeability

lengthscale,
√
K+
y ; (c) the fitted permeability lengthscale for the breakdown

√
K′+Br. (d)

∆U+, reduced with its predicted linear slope, versus
√
K′+Br. – – –, theoretical prediction

∆U+ =
√
K+
x tanh(h+/

√
K+
x )−

√
K+
z .

where h appears scaled with
√
Kx. Note that if we had considered values of h small

enough for h/
√
Kz to be also small, we would have `+U ≈ `

+
T ≈ h+, which would yield no

drag-reducing effect. For the values of h/
√
Kx studied, we have h/

√
Ky = h/

√
Kz = 6,

11 and 17, so the corresponding hyperbolic tangent terms in equations (3.4) and (3.6)
are still essentially unity. This can be appreciated for instance in figure 12(a), where
the predicted slope in the linear regime has been adjusted for the effect of h+ on the

streamwise slip, `+U ≈
√
K+
x tanh(h+/

√
K+
x ), but the spanwise slip remains `+T ≈

√
K+
z .

Figure 12(b), however, shows that
√
K+
y is no longer adequate to parametrise the

onset of the degradation. Panel (c), in turn, suggests that a suitable alternative is√
K ′+Br =

√
K+
y tanh(h+/(9

√
K+
y )), and that the optimum value is still

√
K ′+Br ≈ 0.38,

as in figure 11. All the curves can be once more collapsed by reducing ∆U+ with its
predicted slope in the linear regime and expressing the Reynolds number in terms of√
K ′+Br, as is done in panel (d). This suggests that the optimum performance for shallow

substrates can also be predicted and would be ∆U+
max ≈ 0.8×0.38× [φxy tanh(h/

√
Kx)−
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Figure 13. Instantaneous realisations of u+, v+ and p+ for a smooth channel and for substrates
with φxy ≈ 11.4 at a x-z plane y+ + `+T ≈ 2.5. From left to right the columns are u+, v+ and
p+. From top to bottom, representing increasing permeabilities, (a-c) smooth wall, (d-f ) case
C2, (e-g) case C4, (h-j) case C6 and (m-o) case C7. In all cases, red to blue corresponds to

(2.2 +
√
K+
x /2)[−1, 1] for u+, (0.08 + 2/3

√
K+
y )[−1, 1] for v+ and (5 + 5 4

√
K+
y )[−1, 1] for p+.

φzy]/ tanh(h/9
√
Ky). Note, however, that ∆U+

max decreases slightly as the substrate
depth is reduced, as can be appreciated in panel (a), and that even if there is a delay

in the critical
√
K+
y in absolute terms, as observed in panel (b), any gain in the relative

width of the ‘drag bucket’ region – the near-optimal range – is insignificant, as is clear
from panel (d).

5.2. Flow statistics

To explore the underlying mechanisms for the behaviour observed in the drag reduction
curves, let us focus on a fixed substrate configuration, that is, on one of the curves in
figure 11. Let us take the one with the anisotropy ratio φxy ≈ 11.4, that is, simulations
C1-C7. The corresponding data for the other two substrate configurations can be found
in Appendix B. To illustrate how the overlying turbulence is modified at different points
along the drag reduction curve, figure 13 shows instantaneous realisations of u, v and p
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Figure 14. Mean velocity profiles for a substrate configuration with φxy ≈ 11.4. Permeabilities
in viscous units increase in the direction of the arrow and from blue to red, which correspond
to cases C1-C7. (a) Profiles scaled with uτ measured at the interface plane, y+ = 0. (b) Profiles

shifted by the linearly extrapolated virtual origin of turbulence, `+T =
√
K+
z , and scaled with

the corresponding uτ at y = −`T , where the value at the origin, i.e. the offset predicted from
the linear theory, ∆U+ = U+

slip − `+T , has been subtracted. Black-dashed lines represent the
smooth-channel case.
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Figure 15. Slip velocity at the substrate-channel interface, U+
slip, versus

√
K+
x for the three

substrate configurations, , φxy ≈ 11.4; , φxy ≈ 5.5; , φxy ≈ 3.6. The symbols

correspond to DNS cases listed in table 2. – – –, U+
slip =

√
K+
x .

in an x-z plane immediately above the substrate-channel interface. For small
√
K+
y , the

flow field resembles that observed over a smooth wall. This is shown in panels (a-c) and
(d -f ), where the u-field displays the signature of near-wall streaks, and the v-field that of

quasi-streamwise vortices. As
√
K+
y increases beyond the linear regime, the flow begins to

be altered, as shown in panels (g-l). Some spanwise coherence emerges, becoming more

prevalent for larger
√
K+
y . Eventually, the flow becomes strongly spanwise-coherent and

no trace of the near-wall cycle remains, as shown for a drag-increasing case in panels
(m-o).

To assess quantitatively to what extent turbulence differs from that over smooth
walls, we first focus on the one-point statistics resulting from the DNSs, portrayed in
figures 14 and 16. The former shows the mean velocity profiles. In panel (a) the results are
represented with the origin for the wall-normal height at the substrate-channel interface,
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Figure 16. One-point turbulent statistics for a substrate configuration with φxy ≈ 11.4.
Permeabilities in viscous units increase in the direction of the arrow and from blue to red, which
correspond to cases C1-C7 scaled with the corresponding uτ at y = −`T = −

√
Kz, the linearly

extrapolated virtual origin for turbulence. Black-dashed lines represent the smooth-channel case.
Rms fluctuations of (a) the streamwise velocity, (b) the wall-normal velocity, (c) the spanwise
velocity, and (d) the streamwise vorticity. (e) Reynolds stress.

y+ = 0, as is typically done in the literature. In this representation, the non-zero slip
velocity at the interface, U+

slip, is apparent at y+ = 0, while far away from the wall the

adverse effect of `+T and the ‘roughness-like’ shape of the profile, that is the deviation
from a smooth-wall-like shape, combine with U+

slip to yield the net velocity offset. In this

framework, the effect of `+T and the deviation from the shape of a smooth-wall profile
cannot be easily disentangled.

If the velocity profiles are represented taking the origin for the wall-normal height at
y+ = −`+T and turbulence remained smooth-wall like, the profiles could then be expected
to be like those for smooth walls, save for the offset given by equation (3.3). Subtracting
that offset would then give a collapse of all the velocity profiles, and any deviation can
then be separately attributed to modifications in the turbulence (Garćıa-Mayoral et al.
2019). In figure 14(b), the profiles are portrayed with the origin at y+ = −`+T and with
the offset subtracted from the velocities. For cases C1-C3, which lie in the linear regime,
the resulting collapse is indeed good, but beyond this regime the profiles deviate from the
smooth-wall behaviour increasingly. Let us note that defining uτ at y+ = −`+T implies
that the wall-normal gradient of the mean profile at the interface is no longer necessarily
dU+/dy+|y+=0 = 1. This is because the stresses at that height in viscous units sum
slightly less than one, and more specifically, because a non-zero transpiration gives rise to
a Reynolds stress at the interface, so the viscous stress is no longer the only contribution
to the total. As a result, U+

slip and `+x do not strictly have equal value and cannot be

used interchangeably. For small values of
√
K+
y , the Reynolds stress at the substrate-

channel interface is negligible, so this effect is small and U+
slip ≈ `+x . This is the case
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for the substrates lying on the linear regime. However, as
√
K+
y increases, the Reynolds

stress at the interface ceases to be negligible, and U+
slip = dU+/dy+|y+=0 `

+
x < `+x . This

discrepancy between U+
slip and `+x ≈

√
K+
x for the substrates under consideration is shown

in figure 15. The effect is small for the substrate of simulations C1-C7, but is significant
for the substrates of B1-B7 and A1-A8, with results portrayed in Appendix B. The effect

is particularly intense for the latter substrate, which reaches
√
K+
y ≈ 3 and experiences

significant transpiration. Although U+
slip and `+x represent essentially the same concept,

the quantitative effect of the streamwise slip is carried more accurately by U+
slip, so the

latter has been used for the velocity offset in figure 16(b). Notice that this effect is
negligible in slip-only simulations or other idealised surfaces where zero transpiration
is assumed (Fairhall et al. 2019). Suga et al. (2010) measured experimentally the slip

velocity for isotropic substrates with different
√
K+
x , and their results are similar to those

shown in figure 17 (cf. figure 4(b) in Suga et al. (2010)). Their results also accounted for
the pressure driven flow within the substrates, which would include the extra slip velocity
from Darcy’s contribution discussed in §3.5. However, for the mild pressure gradients
considered, the slip velocity due to the overlying shear, ∼

√
KxdU/dy, is significantly

larger than that due to the pressure gradient, which justifies the similarity with the
present results.

The observations on the agreement or deviation from smooth-wall data in the mean
velocity profiles extend also to the rms velocity fluctuations and streamwise vorticity,
as well as the Reynolds shear stress, portrayed in figures 16(a-e). For the cases in the
linear regime, the agreement with smooth-wall data is good. The only difference is a
small deviation in the profile of u′+ in the region immediately above the interface. This
deviation is caused by the streamwise velocity effectively tending to zero at y+ = −`+U ,
below the reference height y+ = −`+T , and essentially does not alter near-wall dynamics
(Gómez-de-Segura et al. 2018a). Beyond the linear regime, the fluctuations of the
streamwise velocity decrease in intensity, while those of the transverse components
increase. For rough surfaces, this is often associated with a decreased anisotropy of the
fluctuating velocity (Orlandi & Leonardi 2006). The Reynolds stress behaves analogously,
and the rms streamwise vorticity also becomes more intense, but experiences a significant
drop for the final case, C7. The snapshots of figure 13 could suggest that this is caused
by the eventual annihilation of the quasi-streamwise vortices of the near-wall cycle, as
the spanwise-coherent structures become prevalent.

In the models proposed in §3, the streamwise, spanwise and wall-normal permeabilities
have separate effects. These models capture leading-order features, but in equations (2.3)
the effect of the three permeabilities is coupled. This manifests in the DNS results and,
although the coupled effects are secondary, they become increasingly important for large
permeabilities.

The leading-order effect of the substrate on the overlying turbulence is, as discussed
above, set by the transverse permeabilities. Although in the present study they are equal,

it could be expected that
√
K+
z governed the virtual-origin effect, while

√
K+
y governed

the onset of spanwise-coherent dynamics. However, once
√
K+
y becomes sufficiently large,√

K+
x plays a secondary role by indirectly modulating the transpiration. Quantitatively,

this influence is embedded in equations (2.3). In essence, the wall-normal flow that

penetrates into the substrate is in a first instance impeded by
√
K+
y , but from continuity

it eventually needs to traverse the substrate tangentially, being then impeded by
√
K+
x ,

before it leaves through the interface elsewhere. Thus, a large
√
K+
x amplifies the

transpiration effect of
√
K+
y or, rather, a small

√
K+
x limits it. This can be observed
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Figure 17. Turbulent statistics for different permeable substrates. Each symbol indicates cases

with approximately the same
√
K+
y and

√
K+
z . , cases A1, B1 and C3, with

√
K+
y ≈ 0.2;

- - - -, cases A3, B3 and C5, with
√
K+
y ≈ 0.4; · · · ·, cases A6, B6 and C7, with

√
K+
y ≈ 1.0.

The colours represent substrate configurations with a fixed φxy: red, φxy ≈ 3.6; purple, φxy ≈ 5.5;
blue, φxy ≈ 11.4. Black lines correspond to the smooth-channel case. Variables are scaled with
the corresponding uτ at y = −

√
Kz, the linearly extrapolated virtual origin for turbulence. (a)

Mean velocity profiles, (b) mean velocity profiles shifted as in figure 14(a). (c), (d) and (e)
streamwise, wall-normal and spanwise rms velocity fluctuations. (f ) Streamwise vorticity rms
fluctuations. (g) Reynolds stress.

by comparing the three substrates studied at roughly equal values of
√
K+
y . As they have

different anisotropy ratios, for the same
√
K+
y they have different

√
K+
x . Examples are

shown in figure 17. The values
√
K+
y ≈ 0.2, 0.4 and 1.0 have been chosen to observe the

secondary effect of
√
K+
x in the linear regime, near the optimum drag reduction, and in

the fully degraded regime, respectively. In the first case, the effect of
√
K+
x is negligible.

The only effect is essentially that of
√
K+
z setting the virtual origin, and all the one-point

statistics show good agreement with smooth wall data. The effect is still small near the

optimum, for
√
K+
y ≈ 0.4, but the modulation by

√
K+
x begins to manifest, amplifying
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the effects of
√
K+
y already discussed above, such as the decreased anisotropy of the

velocity fluctuations. Nevertheless, the Reynolds stress curve, and thus the shape of the
mean velocity profile, remain close to those in the linear regime and for smooth walls. In

the fully-degraded regime,
√
K+
y ≈ 1.0, the modulating effect of

√
K+
x becomes stronger

and results in a further degradation of the Reynolds stress, the mean profile and the
drag. The near-wall cycle is severely disrupted in this regime, and the main effect of√
K+
x on the velocity fluctuations is on u′+ near the wall, directly through the increased

streamwise slip.

In turn,
√
K+
y also has a secondary effect on the streamwise slip, through the non-zero

Reynolds stress at the interface discussed above. Figure 15 illustrates how, for the same√
K+
x , which governs U+

slip to leading-order, substrates with larger
√
K+
y have a smaller

slip velocity.

While the analysis of the one-point statistics reveals variations in average intensities at
different heights, it cannot provide information on whether those variations are caused by
contributions from lengthscales that are not active over smooth walls, or from a change
in the intensity of the typical lengthscales of canonical wall turbulence. To investigate
this, we analyse the spectral energy distribution of the fluctuating velocities.

As an example, spectral density maps of u2, v2, w2 and uv are represented at a height
of roughly 15 wall units above the virtual origin for turbulence in figure 18. For substrates
in the linear regime, such as C2 in panels (a-d), the agreement in spectral distribution
with smooth-wall flows is excellent, as it was for the rms values, further supporting the
idea that near-wall turbulence remains essentially canonical. For substrate C4, which is

just past the linear regime and has a near-optimum
√
K+
y ≈ 0.32, differences begin to

appear in the spectral distributions, like additional energy at slightly shorter streamwise
wavelengths, but most notably the emergence of a spectral region with high v2 for large
spanwise wavelengths, λ+z ≈ 200−∞ and streamwise wavelengths λ+x ≈ 100− 200. This
feature is consistent with the onset of spanwise-coherent structures observed in figure 13,
and was also observed previously for riblets and connected to the presence of Kelvin-
Helmholtz-like rollers (Garćıa-Mayoral & Jiménez 2011). The linear stability analysis in
Gómez-de-Segura et al. (2018b) showed that the wavelength of the spanwise-coherent
rollers, λ+x , scales in viscous units. In particular, the wavelength is set by the height
where the second derivative of the mean flow, d2U/dy2, concentrates, which is analogous
to the mixing layer thickness of free-shear flows. For small permeabilities, where the near-
wall cycle still prevails, as in the present cases, the near-wall peak of d2U/dy2 scales in
viscous units, and hence the wavelength also scales in viscous units. Although this cannot
be determined from the present simulations, since they are conducted at essentially the
same Reynolds number, it was verified by Garćıa-Mayoral & Jiménez (2012) for riblets.
As the permeabilities increase, the near-wall cycle is destroyed and the near-wall peak
in d2U/dy2 ceases to exist, leaving δ as the only available scale. The wavelength of the
rollers scales then with δ, as suggested in Jiménez et al. (2001) and Breugem et al.
(2006) and thoroughly reported by Kuwata & Suga (2017) and Suga et al. (2018). The
new spectral region observed for case C4 becomes more intense for cases C6 and C7. For
C6, which lies in the degraded regime but still yields a net reduction in drag, energy
appears in wavelengths as short as λ+x ≈ 50, and the spanwise-coherent region spans a
wider set of streamwise wavelengths, λ+x ≈ 60− 350, although there is still a trace of the
spectral densities of smooth-wall flow for long wavelengths, λ+x & 500, specially for v2

and w2. For case C7, which gives a net drag increase, any residual trace of the spectral
distribution for smooth-wall turbulence has disappeared, and the range λ+x ≈ 60 − 350
becomes dominant in v2.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j ) (k) (l)

(m) (n) (o) (p)

Figure 18. Premultiplied two-dimensional spectral densities for a substrate configuration with
φxy ≈ 11.4 at a plane y+ + `+T ≈ 15.5. First column, kxkzEuu; second column, kxkzEvv; third
column, kxkzEww; fourth column, kxkzEuv; with contour increments 0.3241, 0.0092, 0.0404 and
0.0239 in wall units, respectively. Shaded, smooth channel. Red contours, permeable cases: (a-d)
case C2, (e-h) case C4, (i-l) case C6, and (m-p) case C7. The box indicates the region of the
spectrum considered in §5.3.

5.3. Contributions to ∆U+

The degradation of the drag reduction curves in figure 11 and the lack of collapse of
the mean velocity profiles in figure 14(b) show that there is an additional contribution
to ∆U+ beyond the virtual-origins effect predicted in §3.2. To investigate this, we obtain
an expression for ∆U+ by integrating the mean streamwise momentum equation for a
permeable channel and comparing it with that for a smooth channel. This procedure
follows closely MacDonals et al. (2016), Abderrahaman-Elena et al. (2019) and Fairhall
et al. (2019), and is similar to that followed by Garćıa-Mayoral & Jiménez (2011). The
streamwise momentum equation is averaged in time and in the streamwise and spanwise



Drag reduction by permeable substrates 31

0

1

y′+ = y+ + ℓ+T,P

0 ℓ
+
T,P H+

case P

δ′+

interface
(a)

0

1

y′+ = y+
0 ℓ+T,P H+

case S

δ′+

wall

(b)

0

1

y′+ = y+
0 ℓ

+
T,P H+ δ+ δ′+

wall

S

S0

(c)

Figure 19. Sketch of stress curves taking the virtual origin of turbulence as reference. – · –,

viscous stress dU+/dy+; ——, u′v′
+

; – – –, total stress. (a) Permeable case at a friction Reynolds
number δ′+ = δ+ + `+T,P . (b) Smooth-wall case at the same friction Reynolds number δ′+. (c)

Smooth-wall case at a different friction Reynolds number, δ+. The vertical black-dotted line
indicates the substrate-channel interface in the permeable case and the wall in the smooth cases.
The grey shaded area represents the integrated region in equation (5.4). The red shaded area
in (c) shows the difference in the integrated area due to the difference in the friction Reynolds
number.

directions, and integrated in the wall-normal direction,

−u′v′+ +
dU+

dy+
=
δ′+ − y′+

δ′+
, (5.2)

where the virtual origin of turbulence is taken as the reference for the wall-normal
coordinate, i.e. y′+ = y++`+T , and it is also the height where uτ is measured. The effective
half-channel height or the effective friction Reynolds number is then δ′+ = δ+ + `+T ,

as previously defined. In equation (5.2), u′v′
+

is the Reynolds stress, dU+/dy+ the
viscous stress and the right-hand side represents the total stress. These three terms
are represented in figure 19(a).

Integrating again between two heights, the viscous stress term gives the velocity U+

at those two heights, which can be compared to the corresponding equation for a smooth
channel to obtain an expression for ∆U+. The upper integration limit is then taken at an
arbitrary height in the logarithmic region, y′+ = H+, so that the difference in U+ yields
∆U+. For the lower limit, we set it at y′+ = `+T,P , where `+T,P refers to the virtual origin
of turbulence for the permeable case, since for that layout equation (5.2) is defined only
above that height. Integrating equation (5.2) from y′+ = `+T,P , to an arbitrary height in

the logarithmic region, y′+ = H+, yields∫ H+

`+T,P

−u′v′+dy′+ + U+(H+)− U+(`+T,P ) = H+ − `+T,P −
H+2 − `+2

T,P

2δ′+
. (5.3)

This equation applies not only to a permeable channel, but also to a smooth channel
at the same Reynolds number, δ′+, as depicted in figure 19(b). Note that for a smooth
channel y′+ = y+, since the origin of turbulence is at the wall, but the lower integration
limit can still be set at some height above the wall, y′+ = `+T,P , with `+T,P referring to
the origin of the permeable case being compared.

Subtracting equation (5.3) for the permeable case and for the smooth channel, the
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resulting expression for ∆U+ is,

∆U+ = U+
P (H+)− U+

S (H+)

= U+
P (`+T,P )︸ ︷︷ ︸
U+
slip

−U+
S (`+T,P )−

∫ H+

`+T,P

[(
−u′v′+P

)
−
(
−u′v′+S

)]
dy′+,︸ ︷︷ ︸

Tuv

(5.4)

where subscript ‘P ’ denotes the permeable channel, and subscript ‘S’ the reference
smooth channel at the same friction Reynolds number δ′+. Equation (5.4) shows that
∆U+, defined as the difference in U+ between a permeable and smooth channel measured
at the same distance from their respective origins of turbulence, consists of the sum of
three terms.

The first term, is the slip velocity of the permeable case at the substrate-channel inter-
face, U+

slip. This is a drag-reducing term, and for the cases lying in the linear regime it can

be approximated to the virtual origin of the mean flow, `+U , since dU+
P /dy

+|y′+=`+T,P
≈ 1.

The second term, U+
S (`+T,P ), is the mean velocity of the smooth channel measured at y′+ =

`+T,P . It is a drag-increasing term, and if `+T,P . 5, it can be accurately approximated as

U+
S (`+T,P ) ≈ `+T,P . This is essentially the same as the spanwise protrusion height of Luchini

et al. (1991) and Luchini (1996), and the spanwise slip of superhydrophobic surfaces
(Min & Kim 2004; Busse & Sandham 2012). The offset between these terms is then
U+
slip−US(`+T,P ) ≈ `+U−`

+
T,P and represents the virtual-origin effect discussed throughout

this paper. Note, however, that the exact contribution to ∆U+ involves velocities and
not virtual origins as pointed out before. The contribution of the offset between these
two terms to ∆U+ is shown in figure 20, where we can appreciate that the virtual origin
approximation `+U − `

+
T is valid not only in the linear regime, but even slightly beyond

the optimum.

The third term, Tuv, represents the additional Reynolds stress induced by the perme-
able substrate. It is a drag-increasing term and its contribution to ∆U+ is also shown in
figure 20. For the substrates lying in the linear regime, the Reynolds stress is smooth-
wall-like, except for the displacement `+T towards the interface, and the term Tuv is
therefore zero. The contribution of this term begins to be significant at the breakdown√
K+
y |opt, and increases with

√
K+
y in the degraded region. An increase in Reynolds stress

is therefore responsible for the degradation of the drag-reducing behaviour of permeable
substrates.

The spectral energy distribution of the wall-normal velocity in figure 18 shows the
appearance of a new spectral region for large spanwise wavelengths centred around λ+x ≈
150, which is associated to the large spanwise coherent structures observed in figure 13. To
explore whether the additional Reynolds stress accounted for by Tuv is due to the energy
accumulated in this spectral region, we define a spectral box with λ+x ≈ 70−320 and λ+z &
120, as that depicted in figure 18, and quantify its contribution to the additional Reynolds
stress, as in Garćıa-Mayoral & Jiménez (2011). The values are also included in figure 20,
showing a close agreement with the whole Tuv. This suggests that the new spanwise-
coherent structures are indeed responsible for the degradation of the drag, as it was also
observed for riblets in Garćıa-Mayoral & Jiménez (2011). In essence, these structures
increase the turbulence mixing, increasing the local Reynolds stress, and consequently
the global drag.

Note that equation (5.4) compares a permeable channel with a smooth one at the same
friction Reynolds number. Often, however, a reference smooth channel at exactly the
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Figure 20. Different contributions to ∆U+ as a function of
√
K+
y for (a) substrates A1-A8, with

φxy ≈ 3.6, (b) substrates B1-B7, with φxy ≈ 5.5 and (c) substrates C1-C7, with φxy ≈ 11.4. ,
∆U+ measured from the DNSs (same as in table 2); · · · ·, contribution from the virtual-origin
effect, U+

slip − U+
S (`+T ); · · · ·, contribution from the additional Reynolds stress, Tuv; · · · ·,

contribution from the additional Reynolds stress restricted to the spectral window λ+
x ≈ 70−320

and λ+
z & 120; · · · ·, ∆U+ calculated from equation (5.4), as a sum of the contributions

from the virtual-origin effect and the additional Reynolds stress. – – –, theoretical prediction

∆U+ = (φxy − 1)
√
K+
y .

same Reynolds number is not available. This is for instance the case for the simulations
presented in this paper, where all the permeable cases are compared to the same smooth
channel at a slightly different friction Reynolds number. When the Reynolds numbers
match exactly, the total stress, and thus the Reynolds stress, collapse sufficiently far
away from the surface, as they approach zero-value at the centre of the channel. The
contribution Tuv can then be entirely ascribed to wall effects, that is, to the presence of the
substrate. If the Reynolds numbers differ, however, there may be a significant contribution
to Tuv far from the surface, which is a Reynolds-number effect, rather than a direct effect
of the surface. The same effect appears when comparing smooth channels at different
friction Reynolds numbers, as illustrated in figure 19(c). To quantify this effect, we
compare the smooth channel at Reynolds number δ′+ used for equation (5.4), represented
by a subscript ‘S’, with another at a different Reynolds number δ+, represented by a
subscript ‘S0’. Subtracting the two integrated mean streamwise momentum equations,
the universality of the near-wall mean velocity profile over smooth walls gives U+

S (`+T,P ) =

U+
S0(`+T,P ) and U+

S (H+) = U+
S0(H+), yielding

TRe = −
∫ H+

`+T,P

[(
−u′v′+S

)
−
(
−u′v′+S0

)]
dy′+ =

H+2 − `+2
T,P

2

(
1

δ′+
− 1

δ+

)
. (5.5)

When the break-up of equation (5.4) is applied to DNS results from a complex surface,
P in our case, and a smooth wall at a different Reynolds number, S0, the integral of the
difference in Reynolds stresses would include both the surface and the Reynolds number
effects. These, however, can be easily separated as

−
∫ H+

`+T,P

[(
−u′v′+P

)
−
(
−u′v′+S0

)]
dy′+ =

−
∫ H+

`+T,P

[(
−u′v′+P

)
−
(
−u′v′+S

)]
dy′+ −

∫ H+

`+T,P

[(
−u′v′+S

)
−
(
−u′v′+S0

)]
dy′+

= Tuv + TRe.

(5.6)
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Figure 21. (a) Amplification of the most unstable mode versus
√
K+
Br, as in figure 5,

but with the threshold values for the onset of Kelvin-Helmholtz-like instability adjusted to√
K+
Br ≈

√
K+
y = 0.38 − 0.6. (b) Predicted values of ∆U+ from the linear theory of

equation (3.8) versus the anisotropy ratio φxy, as in figure 6(b), but with the adjusted thresholds
for the degraded region. The green line corresponds approximately to the optimum ∆U+

(
√
K+
y |opt ≈ 0.38); the red line corresponds approximately to zero ∆U+ (

√
K+
y |∆U+=0 ≈ 0.6).

The symbols represent the DNS cases studied and the values next to them are the actual ∆U+

measured from the DNSs. Cases beyond ∆U+
pred > 5 are not displayed.

Note that, from equation (5.5), TRe can be easily calculated a priori as the area of
the trapezoid formed between the total stress lines for δ+ and δ′+, as highlighted in
figure 19(c). Tuv can subsequently be obtained by subtracting TRe from the integral of
the difference in Reynolds stresses of cases P and S0, as given by equation (5.6), so that
it only includes the effect of the surface. This has been the procedure used to obtain
the results shown in figure 20, even though for the small values of `+T considered, the
Reynolds number effect, TRe, is negligible.

5.4. Adjustment of the theoretical models

In §3, we presented theoretical models to estimate the drag-reducing behaviour for
anisotropic permeable substrates, specifically, a linear drag-reduction model for small
permeabilities given by equation (3.5) and a threshold for the degradation of this linear
regime based on the onset of Kelvin-Helmholtz rollers. The information obtained from
the present DNSs can be used to assess the validity of the theoretical models summarised
in §3, and if necessary adjust them, so that more accurate predictions can be made.

The drag reduction curves in figure 11 show that the linear regime is accurately
represented by the offset between the virtual origins of the mean flow and that of

turbulence,
√
K+
x −

√
K+
z , as predicted by equation (3.5). As discussed above, ∆U+

in this regime would be more precisely given by the difference U+
slip − U+

S (`+T ), but

the differences between
√
K+
x and U+

slip, and between
√
K+
z and U+

S (`+T ) only become
significant for larger permeabilities – beyond the linear regime, as shown in figure 20.

The DNS results and the discussion in §5.3 also support the idea that the degradation of
the drag-reducing behaviour is caused by the formation of spanwise-coherent structures.
These are generally associated to a Kelvin-Helmholtz-like instability, as discussed in §3.

In that section, we predicted that the onset of these structures was governed by
√
K+
y ,

the leading order term of
√
K+
Br from equation (3.6), as shown in figure 5. From this

figure, we estimated an a priori threshold for the onset of Kelvin-Helmholtz-like rollers
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in the range
√
K+
Br ≈

√
K+
y ≈ 1 − 2.2, beyond which equation (3.5) would no longer

be valid. The drag reduction curves in figure 11(c), however, show that the degradation

sets in for lower values of
√
K+
y than initially hypothesised. The optimum value of ∆U+

occurs at
√
K+
y |opt ≈ 0.38, after which performance degrades, and drag becomes greater

than that for smooth walls for
√
K+
y |∆U+=0 ≈ 0.6. Adjusting figure 5 to account for these

observed values, we obtain figure 21(a), which shows that the onset occurs as soon as
the predicted amplification of the instability becomes positive.

In §3, combining the equation for the linear regime with the limiting values of
√
K+
y , al-

lowed us to design the parameter space for realisable drag reduction shown in figure 6(b),

which later served to select the DNS cases studied in §5. Using the limiting values of
√
K+
y

observed in the DNSs (
√
K+
y ≈ 0.38−0.6), the adjusted prediction map for ∆U+ is shown

in figure 21(b), where the actual values of ∆U+ measured from DNSs are also shown. This
figure illustrates how the theoretical predictions compare to the actual results obtained
from DNS. In the linear regime, ∆U+ is well predicted by the theory. At the optimum

∆U+ line,
√
K+
y ≈ 0.38, the exact value of ∆U+ is given by equation (5.1), that is, it is

roughly 80% of the linear-regime prediction. Beyond this line, the performance degrades,

and for the line
√
K+
y ≈ 0.6, the drag reduction is fully negated. Assuming that this

behaviour holds for substrates with anisotropy ratios different to those studied in this
work, figure 21(b), which essentially contains the same information of figure 12(d), can
be used to estimate their performance.

6. Conclusions

We have explored the ability of anisotropic permeable substrates to reduce turbulent
skin friction. We have examined the effect of the streamwise, wall-normal and spanwise
permeabilities in highly-connected substrates, and showed that streamwise-preferential
substrates can reduce drag.

We have conducted a series of DNSs of turbulent channels delimited by permeable
substrates, where the flow within the substrates was modelled using Brinkman’s equa-
tion. The resulting drag reduction curves obtained for different substrate configurations
(different anisotropy ratios) are similar to the classical curves for riblets: they exhibit a
linear drag reduction regime followed by a degradation of performance, eventually leading
to an increase of drag.

We have observed that, in the linear regime of small permeabilities, the drag reduction
is proportional to the difference between the virtual origin perceived by the mean flow

and that perceived by turbulence, which for permeable substrates gives ∆U+ ≈
√
K+
x −√

K+
z . The drag-reducing ability of this technology results therefore from the streamwise-

preferential configuration of the substrates, as in other complex surfaces (Garćıa-Mayoral
et al. 2019). In this regime, the overlying turbulence remains smooth-wall-like, but shifted

towards the substrate-channel interface by the origin perceived by turbulence, i.e.
√
K+
z .

As permeabilities increase, the linear regime eventually breaks down. We observe
that the breakdown is essentially governed by the wall-normal permeability, K+

y , and

occurs for
√
K+
y ≈ 0.38, independently of the substrate anisotropy. The breakdown

can be attributed to the appearance of spanwise-coherent structures, associated to a
Kelvin-Helmholtz-like instability. These structures appear to disrupt the near-wall cycle
and modify the near-wall turbulence, increasing the Reynolds stress, and consequently,
the drag. As permeabilities increase, the drag-increasing, spanwise-coherent structures
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become prevalent in the flow, outweighing the drag-reducing effect of the streamwise slip
and eventually leading to an increase of drag.

In order to predict the drag-reducing behaviour of anisotropic permeable substrates, we
have established some theoretical models, which agree well with the behaviour observed
from DNS results. The linear regime is accurately described by the expression derived by

Abderrahaman-Elena & Garćıa-Mayoral (2017), where ∆U+ =
√
K+
x −

√
K+
z . This

assumes that the permeable medium is highly connected and that the substrate is
sufficiently deep for the overlying turbulence not to perceive that its depth is finite, h+ &
2
√
K+
x . Beyond

√
K+
y ≈ 0.38, the formation of drag-increasing, Kelvin-Helmholtz rollers

can be captured with a linear stability analysis. These models provide design guidelines
to produce a drag-reducing permeable substrate and give quantitative estimates as to
how much drag reduction could be expected.

Further work is nevertheless required to confirm these findings. Direct numerical
simulations fully resolving the microstructure of the permeable substrates need to be
conducted in order to set the region of validity of the current models, and to gain full
understanding on the effect that these substrates have on the overlying turbulence.

GG was supported by an educational grant from Fundación Bancaria ‘la Caixa’,
Amelia Earhart Fellowship and an award from The Cambridge Commonwealth, European
and International Trust. Some simulations were run using the computational resources
provided under EPSRC-UK Tier-2 grant EP/P020259/1 by CSD3, Cambridge.

Appendix A. Analytical solution of Brinkman’s equation

The flow within the porous medium is approximated using Brinkman’s equation (2.1),
where Kx, Ky and Kz are the principal directions of the permeability tensor and are
considered to be different. Together with the continuity equation, the system of equations
is

ν

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
− ν

Kx
u− ∂p

∂x
= 0, (A 1a)

ν

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
− ν

Ky
v − ∂p

∂y
= 0, (A 1b)

ν

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
− ν

Kz
w − ∂p

∂z
= 0, (A 1c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (A 1d)

which can be solved analytically. Here we restrict ourselves to the permeable substrate
at the bottom of the channel, which extends from y = −h to y = 0 and we neglect the
influence of a mean pressure gradient within the substrate, as discussed in §3.5.

In order to solve equation (A 1), we reduce this system of partial differential equation
(PDE) with three dependent variables into a single equation with a single dependent
variable. We start by taking the divergence of the Brinkman equation (A 1a)-(A 1c) and
use the continuity equation (A 1d) to simplify, which yields

1

Kx

∂u

∂x
+

1

Ky

∂v

∂y
+

1

Kz

∂w

∂z
+

1

ν
∇2p = 0. (A 2)

We then take the y-derivative of equation (A 2) and replace ∂p/∂y from equation (A 1b)
to eliminate the pressure term. Using continuity again to remove the terms in w, the
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following equation is obtained

∂2u

∂x∂y

(
1

Kx
− 1

Kz

)
− 1

Ky

(
∂2v

∂x2
+
∂2v

∂z2

)
− 1

Kz

∂2v

∂y2
+∇4v = 0, (A 3)

which has terms in v and u alone. To remove u, we take the y-derivative of equation (A 1a)
and subtract the x-derivative of (A 1b). The obtained expression is then differentiated
with respect to x, yielding(

∇2 − 1

Kx

)
∂2u

∂x∂y
−
(
∇2 − 1

Ky

)
∂2v

∂x2
= 0. (A 4)

Substituting for ∂2u/∂x∂y from equation (A 3), a single equation for v is obtained. This
equation can be solved by expanding in Fourier series along x and z, so that v(x, y, z) =
v̂(y)eiαxxeiαzz, where αx and αz are the wavenumbers and i is the imaginary unit, i =√
−1. Differentiating in x and z becomes then multiplying by iαx and iαz, respectively,

leading to the following ordinary differential equation (ODE){
D6 +D4

[
−3α2 − 1

Kx
− 1

Kz

]
+D2

[
1

Ky
α2 +

(
2α2 +

1

Kz

)(
α2 +

1

Kx

)
+ α4−

α2
x

(
1

Kx
− 1

Kz

)]
+

[(
α2 +

1

Ky

)(
−α2

(
α2 +

1

Kx

)
+ α2

x

(
1

Kx
− 1

Kz

))]}
v̂ = 0,

(A 5)

where D denotes ∂/∂y and α2 = α2
x + α2

z. This is a sixth order equation, where all the
derivatives are even, and the corresponding characteristic equation is a bicubic equation

a3r
6 + a2r

4 + a1r
2 + a0 = 0, (A 6)

where 

a3 = 1,

a2 = −3α2 − 1

Kx
− 1

Kz
,

a1 =
1

Ky
α2 +

(
2α2 +

1

Kz

)(
α2 +

1

Kx

)
+ α4 − α2

x

(
1

Kx
− 1

Kz

)
,

a0 =

(
α2 +

1

Ky

)(
−α2

(
α2 +

1

Kx

)
+ α2

x

(
1

Kx
− 1

Kz

))
.

This equation can be reduced to a cubic equation and then solved algebraically. If the
discriminant of equation (A 6) is non-zero, i.e. ∆ = 18a3a2a1a0− 4a32a0 + a22a

2
1− 4a3a

3
1−

27a23a
2
0 6= 0, there are 6 different roots. The roots of the original equation (A 6) are

denoted as ±r1, ±r2 and ±r3, and the general solution for v̂ is then

v̂(y) = Ae+r1y +Be−r1y + Ce+r2y +De−r2y + Ee+r3y + F e−r3y. (A 7)

The constants A, B, C, D, E and F are determined once the boundary conditions
are imposed and are a function of the geometry and the wavenumbers, αx and αz.
Similar expressions for the pressure and the streamwise and spanwise velocities can be
obtained by substitutions into equations (A 1b), (A 3), and the continuity equation (A 1d),
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respectively,

p̂(y) = ν

[
r1
(
Ae+r1y −Be−r1y

)
+ r2

(
Ce+r2y −De−r2y

)
+ r3

(
Ee+r3y − F e−r3y

) ]
− ν

(
α2 +

1

Ky

)[
1

r1

(
Ae+r1y −Be−r1y

)
+

1

r2

(
Ce+r2y −De−r2y

)
+

1

r3

(
Ee+r3y − F e−r3y

) ]
, (A 8)

û(y) = i
1

1/Kx − 1/Kz

α2

αx

(
1

Ky
+ α2

)[
A

r1
e+r1y − B

r1
e−r1y +

C

r2
e+r2y − D

r2
e−r2y

+
E

r3
e+r3y − F

r3
e−r3y

]
− i

1

1/Kx − 1/Kz

1

αx

(
1

Kz
+ 2α2

)[
Ar1e+r1y

−Br1e−r1y + Cr2e+r2y −Dr2e−r2y + Er3e+r3y − Fr3e−r3y
]

+ i
1

1/Kx − 1/Kz

1

αx

[
Ar31e+r1y −Br31e−r1y

+ Cr32e+r2y −Dr32e−r2y + Er33e+r3y − Fr33e−r3y
]
, (A 9)

ŵ(y) = −αx
αz
û+ i

1

αz

dv̂

dy
. (A 10)

To obtain A, B, C, D, E and F , the boundary conditions need to be considered. The
permeable substrate is delimited by an impermeable solid wall at the bottom, where no-
slip and impermeability conditions are imposed, and by the free channel flow at the top,
where continuity of the normal and tangential stresses holds, together with the continuity
of the three velocity components. The boundary conditions at the substrate-channel
interface have already been introduced in equation (2.2). Expanding these boundary
conditions in Fourier space, and assuming ν̃ ≈ ν, the continuity of the normal and
tangential stresses at the interface simplifies to the continuity of pressure and wall-normal
shear (dû/dy and dŵ/dy), respectively. Thus, the boundary conditions for the permeable
substrates are

û = ŵ = v̂ = 0 at y = −h, and (A 11a)

ν
dû

dy

∣∣∣∣
y=0−

= ν
dû

dy

∣∣∣∣
y=0+

, ν
dŵ

dy

∣∣∣∣
y=0−

= ν
dŵ

dy

∣∣∣∣
y=0+

, p̂|y=0− = p̂|y=0+ at y = 0,

(A 11b)

where, at y = 0, the plus and minus signs correspond to the substrate and fluid sides of
the interface, respectively.

By applying the above boundary conditions to equations (A 7), (A 9), (A 10) and
(A 8), and particularising the solution at the substrate-channel interface, the velocities
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at the interface are

û|y=0− = Cuu(αx, αz)
dû

dy

∣∣∣∣
y=0+

+ Cuw(αx, αz)
dŵ

dy

∣∣∣∣
y=0+

+ Cup(αx, αz)p̂|y=0+ , (A 12a)

ŵ|y=0− = Cwu(αx, αz)
dû

dy

∣∣∣∣
y=0+

+ Cww(αx, αz)
dŵ

dy

∣∣∣∣
y=0+

+ Cwp(αx, αz)p̂|y=0+ , (A 12b)

v̂|y=0− = Cvu(αx, αz)
dû

dy

∣∣∣∣
y=0+

+ Cvw(αx, αz)
dŵ

dy

∣∣∣∣
y=0+

+ Cvp(αx, αz)p̂|y=0+ , (A 12c)

where the coefficients Cij(αx, αz) are a function of the wavenumbers, αx and αz, and
of the geometry of the substrate, i.e. Kx, Ky, Kz and h. An equivalent analysis can be
carried out for the upper permeable substrate. Considering the symmetry properties for
each variable, this yields

û|y=(2δ)+ = − Cuu(αx, αz)
dû

dy

∣∣∣∣
y=(2δ)−

− Cuw(αx, αz)
dŵ

dy

∣∣∣∣
y=(2δ)−

+ Cup(αx, αz)p̂|y=(2δ)− ,

(A 13a)

ŵ|y=(2δ)+ = − Cwu(αx, αz)
dû

dy

∣∣∣∣
y=(2δ)−

− Cww(αx, αz)
dŵ

dy

∣∣∣∣
y=(2δ)−

+ Cwp(αx, αz)p̂|y=(2δ)− ,

(A 13b)

v̂|y=(2δ)+ = Cvu(αx, αz)
dû

dy

∣∣∣∣
y=(2δ)−

+ Cvw(αx, αz)
dŵ

dy

∣∣∣∣
y=(2δ)−

− Cvp(αx, αz)p̂|y=(2δ)− .

(A 13c)

When αx = 0 or αz = 0, Brinkman’s equation simplifies and so does its solution. These
cases are solved separately in §A.1, A.2 and A.3.

A.1. Modes αx 6= 0, αz = 0

When αz = 0, the z-derivatives become zero and the Brinkman equation for w, i.e.
equation (A 1c), decouples from the other two. The original system of equations simplifies
then to

ν

(
∂2u

∂x2
+
∂2u

∂y2

)
− ν

Kx
u− ∂p

∂x
= 0, (A 14a)

ν

(
∂2v

∂x2
+
∂2v

∂y2

)
− ν

Ky
v − ∂p

∂y
= 0, (A 14b)(

∂2w

∂x2
+
∂2w

∂y2

)
− 1

Kz
w = 0, (A 14c)

∂u

∂x
+
∂v

∂y
= 0, (A 14d)

The velocities u and v can be solved with a procedure similar to that described above,
while w can be solved separately.

Taking the two-dimensional divergence of equations (A 14a) and (A 14b) in the (x, y)
plane and using continuity yields(

1

Ky
− 1

Kx

)
∂v

∂y
+

1

ν
∇2
xyp = 0. (A 15)

Taking the y-derivative of equation (A 14b) and substituting ∂v/∂y from (A 15) yields
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an equation in p̂ alone. Taking the Fourier transform in x leads to{
D4 +

[
−2α2

x −
1

Kx

]
D2 + α2

x

[
α2
x +

1

Ky

]}
p̂ = 0. (A 16)

The corresponding characteristic equation is biquadratic,

m4 +m2

(
−2α2 − 1

Kx

)
+

(
α4 +

α2

Ky

)
= 0. (A 17)

Rewriting it as a second order equation, the roots of the characteristic equation are

m1 = −m2 =

√√√√√2α2Kx + 1 +

√
4α2Kx

(
1− Kx

Ky

)
+ 1

2Kx
,

m3 = −m4 =

√√√√√2α2Kx + 1−
√

4α2Kx

(
1− Kx

Ky

)
+ 1

2Kx
.

Except for the case in which m1 = m3, i.e. Kx

Ky
= 1+4α2Kx

4α2Kx
, the expression for p̂

becomes:

p̂(y) = A′em1y +B′em2y + C ′em3y +D′em4y, (A 18)

where A′, B′, C ′ and D′ depend on the wavenumber αx and the geometrical properties
of the permeable medium, and are determined by imposing the boundary conditions –
impermeability and no slip conditions at y = −h, and continuity of pressure and dû/dy
at y = 0. The general solutions for v̂ and û can be obtained from equations (A 15) and
(A 14d), respectively.

In contrast, solving equation (A 14c) for ŵ is straightforward. Expanding it in Fourier
series gives

∂2ŵ

∂y2
−
(
α2
x +

1

Kz

)
ŵ = 0, (A 19)

whose solution is

ŵ = E′x0ey/Lw + F ′x0e−y/Lw , (A 20)

where Lw = 1/
√
α2
x + 1/Kz. Applying now the boundary conditions for ŵ, ŵ = 0 at the

impermeable wall and continuity of dŵ/dy at the interface, leads to

ŵ = Lw
e(y+h)/Lw − e−(y+h)/Lw

eh/Lw + e−h/Lw

dŵ

dy

∣∣∣∣
y=0+

. (A 21)

Comparing to the expressions presented in (A 12), Cww(αx, 0) is the proportionality term
in equation (A 21) between ŵ and its gradient, whereas Cwu(αx, 0) = Cwp(αx, 0) = 0. Also,
from the general solutions for û and ŵ, we observe that Cuw(αx, 0) = Cvw(αx, 0) = 0,
which was expected, as there is no coupling between ŵ, and the other two velocities, û
and v̂, for modes (αx, 0). Hence, in this case the 9 coefficients presented for the general
interface conditions (A 12) are reduced to only 5.

A.2. Modes αx = 0, αz 6= 0

In this case, Brinkman’s equation for u decouples from the other two. For cases with
the same permeability in y and z directions, Kz = Ky, the solution simplifies even more,



Drag reduction by permeable substrates 41

to (
∂2u

∂y2
+
∂2u

∂z2

)
− 1

Kx
u = 0, (A 22a)

ν

(
∂2v

∂y2
+
∂2v

∂z2

)
− ν

Ky
v − ∂p

∂y
= 0, (A 22b)

ν

(
∂2w

∂y2
+
∂2w

∂z2

)
− ν

Ky
w − ∂p

∂z
= 0, (A 22c)

∂v

∂y
+
∂w

∂z
= 0, (A 22d)

Taking the two-dimensional divergence of equations (A 22b) and (A 22c) in the (y, z)
plane leads to a Laplace equation for the pressure. We then take the Fourier transform
with respect to z (i.e. p(y, z) = p̂(y)eiαzz) to get

p̂(y) = A′′0ze
αzy +B′′0ze

−αzy, (A 23)

The general expressions for v̂ and ŵ can then be derived from the equations (A 22b) and
(A 22d), respectively.

The streamwise velocity is solved similarly to w in §A.1. We take the Fourier transform
of equation (A 22a) in z, which gives

∂2û

∂y2
−
(
α2
z +

1

Kx

)
û = 0. (A 24)

The solution, after applying the boundary conditions for û, is

û = Lu
e(y+h)/Lu − e−(y+h)/Lu

eh/Lu + e−h/Lu

dû

dy

∣∣∣∣
y=0+

, (A 25)

where Lu = 1/
√
α2
z + 1/Kx. The proportionality coefficient relating û with its gradient

is the coefficient Cuu(0, αz), i.e.

Cuu(0, αz) = Lu
e(y+h)/Lu − e−(y+h)/Lu

eh/Lu + e−h/Lu
, (A 26)

and Cup(0, αz) = Cuw(0, αz) = Cwu(0, αz) = Cvu(0, αz) = 0.

A.3. Mode αx = 0, αz = 0

Although the coefficients for the mean can be directly obtained from the expressions
derived in §A.1 and §A.2, this case deserves further discussion. When αx = αz = 0, the
equations for the three velocities u, v and w decouple from each other and the velocities
for mode zero become

û =
√
Kx

e(y+h)/
√
Kx − e−(y+h)/

√
Kx

eh/
√
Kx + e−h/

√
Kx

dû

dy

∣∣∣∣
y=0+

, (A 27a)

ŵ =
√
Kz

e(y+h)/
√
Kz − e−(y+h)/

√
Kz

eh/
√
Kz + e−h/

√
Kz

dŵ

dy

∣∣∣∣
y=0+

, (A 27b)

v̂ = 0. (A 27c)

Equations (A 27a) and (A 27b) are obtained from particularising equations (A 21) and
(A 25) for αz = 0 and αx = 0, respectively, while equation (A 27b) is obtained from
continuity, after applying the boundary condition that v̂ = 0 at y = 0. Particularising at
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y = 0 and comparing to the general boundary conditions introduced in equation (A 12),
we have

û|y=0 =
√
Kx tanh

(
h√
Kx

)
dû

dy

∣∣∣∣
y=0+

= Cuu(0, 0)
dû

dy

∣∣∣∣
y=0+

, (A 28a)

ŵ|y=0 =
√
Kz tanh

(
h√
Kz

)
dŵ

dy

∣∣∣∣
y=0+

= Cww(0, 0)
dŵ

dy

∣∣∣∣
y=0+

, (A 28b)

v̂|y=0 = 0, (A 28c)

where all the coefficients in equation (A 12) are zero except for Cuu and Cww, which relate
the tangential velocities to their wall-normal gradient. These are the mean slip lengths
`+x and `+z derived by Abderrahaman-Elena & Garćıa-Mayoral (2017).

Appendix B. Turbulence statistics for permeable substrates with
φxy = 3.6− 5.5

In §5 results for only the permeable substrates with φxy ≈ 11.4 are discussed. In this
appendix, the flow statistics for the other two substrate configurations are presented. The
mean velocity profiles and the turbulence fluctuations for configurations with φxy ≈ 5.5
and φxy ≈ 3.6 are compiled in figure 22.
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Figure 22. One-point turbulent statistics for (A.a-A.f ) a substrate configuration with
φxy ≈ 3.6, which corresponds to cases A1-A8; (B.a-B.f ) a substrate configuration with
φxy ≈ 5.5, which corresponds to cases B1-B7. Permeabilities in viscous units increase in the
direction of the arrow and from blue to red. Profiles are scaled with the corresponding uτ at
y = −`T = −

√
Kz, the linearly extrapolated virtual origin for turbulence. Black-dashed lines

represent the smooth-channel case. (A.a, B.a) Mean velocity profiles shifted by `+T and where the

value at the origin, i.e. the offset predicted from the linear theory, ∆U+ = U+
slip − `+T , has been

subtracted. Rms fluctuations of (A.b, B.b) the streamwise velocity, (A.c, B.c) the wall-normal
velocity, (A.d, B.d) the spanwise velocity, and (A.e, B.e) the streamwise vorticity. (A.f, B.f )
Reynolds stress.
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Appendix C. Fractional step method for coupled velocity-pressure
boundary conditions

As mentioned in §4.1, in the DNS code the boundary conditions given by equa-
tions (2.3) are imposed with full, time-implicit coupling, and are embedded in the block
matrices in equation (4.3). For instance, discretising equation (2.3a) and rearranging it,
the boundary condition for the streamwise velocity at the bottom boundary is imposed
as

A11u
k
0 +A12u

k
1 +A13w

k
0 +A14w

k
1 +G11p

k
1 +G12p

k
2 = 0. (C 1)

Note that due to the staggered discretisation used, the streamwise and spanwise velocity
components at the boundaries are interpolated using ghost points and their immediate
neighbours. Therefore, uk0 and wk0 refer to the velocities at the ghost point, and uk1 and
wk1 to those at the first grid point above the boundary. The pressure pk in equation (C 2)
is defined only at the internal points of the channel (Kim & Moin 1985). Hence, the
pressure at the interface is extrapolated from the first two points into the channel, pk1
and pk2 . The elements A1i and G1i in equation (C 1) include terms from the left hand
side in equation (2.3a) and from the coefficients Cuu, Cuw and Cup. Similar expressions
are obtained for the other two velocities from equation (2.3a) and their respective
equations for the top interface. Implementing these boundary conditions in the system
of equations (4.3), results in the modification of the following rows,

Au 0 0

0 Av 0

0 0 Aw

G

D 0





uk

vk

wk

pk



=



rk−1u

rk−1v

rk−1w

0



, (C 2)

A11A12 A13A14 G11G12
0

0

0

0

0

0

where the A matrix and the vectors uk and rk−1 from equation (4.3) have been expanded
in order to introduce the boundary conditions. The symbols in equation (C 2) refer to
the non-zero matrix elements containing the terms introduced by the boundary condi-
tions (2.3). The first row with full symbols ( ), for instance, corresponds to the condition
for the streamwise velocity, as given by equation (C 1). Similarly, the rows with grey ( )
and empty ( ) symbols correspond to the boundary conditions for the wall-normal and
spanwise velocities, respectively, as given by the discretisation of equations (2.3b) and
(2.3c) and their analogous for the top boundary. Thus, the relationships between the three
velocities and the tangential shears dû/dy and dŵ/dy are embedded in A, which is no
longer tridiagonal, while the coupling between the velocities and pressure is embedded
in both A and G. The gradient operator also includes then terms from the boundary
conditions. Once the boundary conditions have been applied, the LU decomposition of
the system (C 2) yields the system (4.4). Note that while for Perot (1993) the equations
for u∗, v∗ and w∗ were decoupled and could be solved independently, this is not the case
here. In our case, u∗ and w∗ must be solved simultaneously, while v∗ can only be solved
decoupled from the other velocity components once u∗ and w∗ have been solved.
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