91 research outputs found

    Development of a clinical calculator to aid the identification of MODY in pediatric patients at the time of diabetes diagnosis

    Get PDF
    This is the final version. Available from Nature Research via the DOI in this record.Maturity Onset Diabetes of the Young (MODY) is a young-onset, monogenic form of diabetes without needing insulin treatment. Diagnostic testing is expensive. To aid decisions on who to test, we aimed to develop a MODY probability calculator for paediatric cases at the time of diabetes diagnosis, when the existing “MODY calculator” cannot be used. Firth logistic regression models were developed on data from 3541 paediatric patients from the Swedish ‘Better Diabetes Diagnosis’ (BDD) population study (n= 46 (1.3%) MODY (HNF1A, HNF4A, GCK)). Model performance was compared to using islet autoantibody testing. HbA1c, parent with diabetes, and absence of polyuria were signifcant independent predictors of MODY. The model showed excellent discrimination (c-statistic= 0.963) and calibrated well (Brier score= 0.01). MODY probability > 1.3% (ie. above background prevalence) had similar performance to being negative for all 3 antibodies (positive predictive value (PPV)= 10% v 11% respectively i.e. ~ 1 in 10 positive test rate). Probability > 1.3% and negative for 3 islet autoantibodies narrowed down to 4% of the cohort, and detected 96% of MODY cases (PPV= 31%). This MODY calculator for paediatric patients at time of diabetes diagnosis will help target genetic testing to those most likely to beneft, to get the right diagnosis.Diabetes UKWellcome TrustNational Institute for Health Researc

    The COVID-19 Pandemic Affects Seasonality, With Increasing Cases of New-Onset Type 1 Diabetes in Children, From the Worldwide SWEET Registry

    Get PDF
    Objective: To analyze whether the coronavirus disease 2019 (COVID-19) pandemic increased the number of cases or impacted seasonality of new-onset type 1 diabetes (T1D) in large pediatric diabetes centers globally. Research design and methods: We analyzed data on 17,280 cases of T1D diagnosed during 2018-2021 from 92 worldwide centers participating in the SWEET registry using hierarchic linear regression models. Results: The average number of new-onset T1D cases per center adjusted for the total number of patients treated at the center per year and stratified by age-groups increased from 11.2 (95% CI 10.1-12.2) in 2018 to 21.7 (20.6-22.8) in 2021 for the youngest age-group, <6 years; from 13.1 (12.2-14.0) in 2018 to 26.7 (25.7-27.7) in 2021 for children ages 6 to <12 years; and from 12.2 (11.5-12.9) to 24.7 (24.0-25.5) for adolescents ages 12-18 years (all P < 0.001). These increases remained within the expected increase with the 95% CI of the regression line. However, in Europe and North America following the lockdown early in 2020, the typical seasonality of more cases during winter season was delayed, with a peak during the summer and autumn months. While the seasonal pattern in Europe returned to prepandemic times in 2021, this was not the case in North America. Compared with 2018-2019 (HbA1c 7.7%), higher average HbA1c levels (2020, 8.1%; 2021, 8.6%; P < 0.001) were present within the first year of T1D during the pandemic. Conclusions: The slope of the rise in pediatric new-onset T1D in SWEET centers remained unchanged during the COVID-19 pandemic, but a change in the seasonality at onset became apparent.info:eu-repo/semantics/publishedVersio

    Residual beta cell function at diagnosis of type 1 diabetes in children and adolescents varies with gender and season

    Get PDF
    Background There are seasonal variations and gender differences in incidence of type 1 diabetes (T1D), metabolic control and responses to immune interventions at onset of the disease. We hypothesized that there are seasonal and gender differences in residual insulin secretion already at diagnosis of T1D. Methods In 2005, a national study, the Better Diabetes Diagnosis, was started to classify all newly diagnosed children and adolescents with diabetes. About 95% (3824/4017) of the patients were classified as T1D, and our analyses are based on the patients with T1D. Results C-peptide was lower in younger children, 010 years of age (0.23 +/- 0.20 nmol/L) than in older children, 1118 years of age (0.34 +/- 0.28 nmol/L) (p < 0.000 ). There was a seasonal variation in non-fasting serum C-peptide, significantly correlated to the seasonal variation of diagnosis (p < 0.01). Most children were diagnosed in January, February and March as well as in October when C-peptide was highest, whereas fewer patients were diagnosed in April and May when serum C-peptide was significantly lower (p < 0.01). The seasonal variation of C-peptide was more pronounced in boys than in girls (p < 0.000 and p < 0.01, respectively). Girls had higher C-peptide than boys (p < 0.05), especially in early puberty. Conclusions Both seasonal and gender differences in residual beta cell function exist already at diagnosis of T1D. These observations have consequences for treatment and for randomizing patients in immune intervention clinical trials. Copyright (C) 2012 John Wiley & Sons, Ltd

    The Better Diabetes Diagnosis (BDD) study – A review of a nationwide prospective cohort study in Sweden

    No full text
    The incidence of type 1 diabetes (T1D) in Sweden is one of the highest in the world. However, the possibility of other types of diabetes must also be considered. In addition, individuals with T1D constitute a heterogeneous group. A precise classification of diabetes is a prerequisite for optimal outcome. For precise classification, knowledge on the distribution of genetic factors, biochemical markers and clinical features in individuals with new onset of diabetes is needed. The Better Diabetes Diagnosis (BDD), is a nationwide study in Sweden with the primary aim to facilitate a more precise classification and diagnosis of diabetes in order to enable the most adequate treatment for each patient. Secondary aims include identification of risk factors for diabetes-related co-morbidities. Since 2005, data on almost all children and adolescents with newly diagnosed diabetes in Sweden are prospectively collected and including heredity of diabetes, clinical symptoms, levels of C peptide, genetic analyses and detection of autoantibodies. Since 2011, analyses of HLA profile, autoantibodies and C peptide levels are part of clinical routine in Sweden for all pediatric patients with suspected diagnosis of diabetes. In this review, we present the methods and main results of the BDD study so far and discuss future aspects

    Thyroid autoimmunity in relation to islet autoantibodies and HLA-DQ genotype in newly diagnosed type 1 diabetes in children and adolescents.

    No full text
    AIMS/HYPOTHESIS: The aim of this work was to investigate, in children newly diagnosed with type 1 diabetes: (1) the prevalence of autoantibodies against thyroid peroxidase (TPOAb) and thyroglobulin (TGAb); and (2) the association between TPOAb, TGAb or both, with either islet autoantibodies or HLA-DQ genes. METHODS: Blood samples from 2,433 children newly diagnosed with type 1 diabetes were analysed for TPOAb and TGAb in addition to autoantibodies against arginine zinc transporter 8 (ZnT8RA), tryptophan zinc transporter 8 (ZnT8WA), glutamine zinc transporter 8 (ZnT8QA), glutamic acid decarboxylase (GADA), insulin (IAA), insulinoma-associated protein-2 (IA-2A), HLA-DQA-B1 genotypes, thyroid-stimulating hormone (TSH) and free thyroxine (T4). RESULTS: At type 1 diabetes diagnosis, 12% of the children had thyroid autoantibodies (60% were girls; p < 0.0001). GADA was positively associated with TPOAb (p < 0.001) and with TGAb (p < 0.001). In addition, ZnT8A was associated with both TPOAb (p = 0.039) and TGAb (p = 0.015). DQB1*05:01 in any genotype was negatively associated with TPOAb (OR 0.55, 95% CI 0.37, 0.83, p value corrected for multiple comparisons (p c) = 0.012) and possibly with TGAb (OR 0.55, 95% CI 0.35, 0.87, p c = 0.07). Thyroid autoimmunity in children newly diagnosed with type 1 diabetes was rarely (0.45%) associated with onset of clinical thyroid disease based on TSH and free T4. CONCLUSIONS/INTERPRETATION: GADA and ZnT8A increased the risk for thyroid autoimmunity at the time of clinical diagnosis of type 1 diabetes, while HLA-DQB1*05:01 reduced the risk. However, the associations between thyroid autoimmunity and HLA-DQ genotype were weak and did not fully explain the co-occurrence of islet and thyroid autoimmunity

    Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial

    No full text
    The aim of this study was to investigate the safety and efficacy of alum formulated glutamic acid decarboxylase GAD(65) (GAD-alum) treatment of children and adolescents with type 1 diabetes after 4 years of follow-up. Seventy children and adolescents aged 10-18 years with recent onset type 1 diabetes participated in a phase II, double-blind, randomised placebo-controlled clinical trial. Patients identified as possible participants attended one of eight clinics in Sweden to receive information about the study and for an eligibility check, including a medical history. Participants were randomised to one of the two treatment groups and received either a subcutaneous injection of 20 mu g of GAD-alum or placebo at baseline and 1 month later. The study was blinded to participants and investigators until month 30. The study was unblinded at 15 months to the sponsor and statistician in order to evaluate the data. At follow-up after 30 months there was a significant preservation of residual insulin secretion, as measured by C-peptide, in the group receiving GAD-alum compared with placebo. This was particularly evident in patients with andlt; 6 months disease duration at baseline. There were no treatment-related serious adverse events. We have now followed these patients for 4 years. Overall, 59 patients, 29 who had been treated with GAD-alum and 30 who had received placebo, gave their informed consent. One patient in each treatment group experienced an episode of keto-acidosis between months 30 and 48. There were no treatment-related adverse events. The primary efficacy endpoint was the change in fasting C-peptide concentration from baseline to 15 months after the prime injection for all participants per protocol set. In the GAD-alum group fasting C-peptide was 0.332 +/- 0.032 nmol/l at day 1 and 0.215 +/- 0.031 nmol/l at month 15. The corresponding figures for the placebo group were 0.354 +/- 0.039 and 0.184 +/- 0.033 nmol/l, respectively. The decline in fasting C-peptide levels between day 1 and month 1, was smaller in the GAD-alum group than the placebo group. The difference between the treatment groups was not statistically significant. In those patients who were treated within 6 months of diabetes diagnosis, fasting C-peptide had decreased significantly less in the GAD-alum group than in the placebo-treated group after 4 years. Four years after treatment with GAD-alum, children and adolescents with recent-onset type 1 diabetes continue to show no adverse events and possibly to show clinically relevant preservation of C-peptide. ClinicalTrials.gov NCT00435981 The study was funded by The Swedish Research Council K2008-55X-20652-01-3, Barndiabetesfonden (The Swedish Child Diabetes Foundation), the Research Council of Southeast Sweden, and an unrestricted grant from Diamyd Medical AB.The original publication is available at www.springerlink.com:Johnny Ludvigsson, Maria Hjorth, Mikael Chéramy, Stina Axelsson, Mikael Pihl, G Forsander, N -O Nilsson, B-O Samuelsson, T Wood, J Aman, E Ortqvist and Rosaura Casas, Extended evaluation of the safety and efficacy of GAD treatment of children and adolescents with recent-onset type 1 diabetes: a randomised controlled trial, 2011, DIABETOLOGIA, (54), 3, 634-640.http://dx.doi.org/10.1007/s00125-010-1988-1Copyright: Springer Science Business Mediahttp://www.springerlink.com
    corecore