90 research outputs found
Identification of an inducible nitric oxide synthase in diaphragm mitochondria from septic miceIts relation with mitochondrial dysfunction and prevention by melatonin
Producción CientíficaSepsis provokes an induction of inducible nitric oxide synthase (iNOS) and melatonin down-regulates its expression and activity. Looking for an inducible mtNOS isoform, we induced sepsis by cecal ligation and puncture in both normal and iNOS knockout mice and studied the changes in mtNOS activity. We also studied the effects of mtNOS induction in mitochondrial function, and the role of melatonin against induced mtNOS and mitochondrial dysfunction. The activity of mtNOS and nitrite levels significantly increased after sepsis in iNOS+/+ mice. These animals showed a significant inhibition of the respiratory chain activity and an increase in mitochondrial oxidative stress, reflected in the disulfide/glutathione ratio, glutathione redox cycling enzymes activity and lipid peroxidation levels. Interestingly, mtNOS activity remained unchanged in iNOS-/- septic mice, and mitochondria of these animals were unaffected by sepsis. Melatonin administration to iNOS+/+ mice counteracted mtNOS induction and respiratory chain failure, restoring the redox status. The results support the existence of an inducible mtNOS that is likely coded by the same gene as iNOS. The results also suggest that sepsis-induced mtNOS is responsible for the increase of mitochondrial impairment due to oxidative stress in sepsis, perhaps due to the high production of NO. Melatonin treatment prevents mitochondrial failure at the same extend as the lack of iNOS gene
Bench-to-bedside review : targeting antioxidants to mitochondria in sepsis
Peer reviewedPublisher PD
Fiber Type-Specific Nitric Oxide Protects Oxidative Myofibers against Cachectic Stimuli
Oxidative skeletal muscles are more resistant than glycolytic muscles to cachexia caused by chronic heart failure and other chronic diseases. The molecular mechanism for the protection associated with oxidative phenotype remains elusive. We hypothesized that differences in reactive oxygen species (ROS) and nitric oxide (NO) determine the fiber type susceptibility. Here, we show that intraperitoneal injection of endotoxin (lipopolysaccharide, LPS) in mice resulted in higher level of ROS and greater expression of muscle-specific E3 ubiqitin ligases, muscle atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), in glycolytic white vastus lateralis muscle than in oxidative soleus muscle. By contrast, NO production, inducible NO synthase (iNos) and antioxidant gene expression were greatly enhanced in oxidative, but not in glycolytic muscles, suggesting that NO mediates protection against muscle wasting. NO donors enhanced iNos and antioxidant gene expression and blocked cytokine/endotoxin-induced MAFbx/atrogin-1 expression in cultured myoblasts and in skeletal muscle in vivo. Our studies reveal a novel protective mechanism in oxidative myofibers mediated by enhanced iNos and antioxidant gene expression and suggest a significant value of enhanced NO signaling as a new therapeutic strategy for cachexia
Melatonin protects rats from radiotherapy-induced small intestine toxicity
Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-κB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.This study was partially supported by grant no. SAF2009-14037 from the Spanish Ministry of Economy and Competitivity (MINECO), GREIB.PT_2010_04 from the CEIBiotic Program of the University of Granada, Spain, and CTS-101 from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía, Spain
Is there a role for melatonin in fibromyalgia?
Fibromyalgia, characterised by persistent pain, fatigue, sleep disturbance and cognitive dysfunction, is a central sensitivity syndrome that also involves abnormality in peripheral generators and in the hypothalamic pituitary adrenal axis. Heterogeneity of clinical expression of fibromyalgia with a multifactorial aetiology has made the development of effective therapeutic strategies challenging. Physiological properties of the neurohormone melatonin appear related to the symptom profile exhibited by patients with fibromyalgia and thus disturbance of it’s production would be compatible with the pathophysiology. Altered levels of melatonin have been observed in patients with fibromyalgia which are associated with lower secretion during dark hours and higher secretion during daytime. However, inconsistencies of available clinical evidence limit conclusion of a relationship between levels of melatonin and symptom profiles in patients with fibromyalgia. Administration of melatonin to patients with fibromyalgia has demonstrated suppression of many symptoms and an improved quality of life consistent with benefit as a therapy for the management of this condition. Further studies with larger samples, however, are required to explore the potential role of melatonin in the pathophysiology of fibromyalgia and determine the optimal dosing regimen of melatonin for the management of fibromyalgia
The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted
Mitochondrial respiratory states and rate
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
- …