582 research outputs found

    Pioglitazone Prevents Capillary Rarefaction in Streptozotocin-Diabetic Rats Independently of Glucose Control and Vascular Endothelial Growth Factor Expression

    Get PDF
    Background/Aims: Reduction of capillary network density occurs early in the development of metabolic syndrome and may be relevant for the precipitation of diabetes. Agonists of the peroxisome proliferator-activated receptor (PPAR)-gamma transcription factor are vasculoprotective, but their capacity for structural preservation of the microcirculation is unclear. Methods: Male Wistar rats were rendered diabetic by streptozotocin and treated with pioglitazone in chow for up to 12 weeks. Capillary density was determined in heart and skeletal muscle after platelet endothelial cell adhesion molecule-1 (PECAM-1) immunostaining. Hallmarks of apoptosis and angiogenesis were determined. Results: Capillary density deteriorated progressively in the presence of hyperglycemia (from 971/mm(2) to 475/mm(2) in quadriceps muscle during 13 weeks). Pioglitazone did not influence plasma glucose, left ventricular weight, or body weight but nearly doubled absolute and relative capillary densities compared to untreated controls (1.2 vs. 0.6 capillaries/myocyte in heart and 1.5 vs. 0.9 capillaries/myocyte in quadriceps muscle) after 13 weeks of diabetes. No antiapoptotic or angiogenic influence of pioglitazone was detected while a reduced expression of hypoxia-inducible factor-3 alpha and PPAR coactivator-1 alpha (PGC-1 alpha) mRNA as well as vascular endothelial growth factor (VEGF) protein possibly occurred as a consequence of improved vascularization. Conclusion: Pioglitazone preserves microvascular structure in diabetes independently of improvements in glycemic control and by a mechanism unrelated to VEGF-mediated angiogenesis. Copyright (C) 2012 S. Karger AG, Base

    Advantages of the single delay model for the assessment of insulin sensitivity from the intravenous glucose tolerance test

    Get PDF
    The Minimal Model, (MM), used to assess insulin sensitivity (IS) from Intra-Venous Glucose-Tolerance Test (IVGTT) data, suffers from frequent lack of identifiability (parameter estimates with Coefficients of Variation (CV) less than 52%). The recently proposed Single Delay Model (SDM) is evaluated as a practical alternative

    Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conventional knee and hip implant systems have been in use for many years with good success. However, the custom design of implant components based on patient-specific anatomy has been attempted to overcome existing shortcomings of current designs. The longevity of cementless implant components is highly dependent on the initial fit between the bone surface and the implant. The bone-implant interface design has historically been limited by the surgical tools and cutting guides available; and the cost of fabricating custom-designed implant components has been prohibitive.</p> <p>Methods</p> <p>This paper describes an approach where the custom design is based on a Computed Tomography scan of the patient's joint. The proposed design will customize both the articulating surface and the bone-implant interface to address the most common problems found with conventional knee-implant components. Finite Element Analysis is used to evaluate and compare the proposed design of a custom femoral component with a conventional design.</p> <p>Results</p> <p>The proposed design shows a more even stress distribution on the bone-implant interface surface, which will reduce the uneven bone remodeling that can lead to premature loosening.</p> <p>Conclusion</p> <p>The proposed custom femoral component design has the following advantages compared with a conventional femoral component. (i) Since the articulating surface closely mimics the shape of the distal femur, there is no need for resurfacing of the patella or gait change. (ii) Owing to the resulting stress distribution, bone remodeling is even and the risk of premature loosening might be reduced. (iii) Because the bone-implant interface can accommodate anatomical abnormalities at the distal femur, the need for surgical interventions and fitting of filler components is reduced. (iv) Given that the bone-implant interface is customized, about 40% less bone must be removed. The primary disadvantages are the time and cost required for the design and the possible need for a surgical robot to perform the bone resection. Some of these disadvantages may be eliminated by the use of rapid prototyping technologies, especially the use of Electron Beam Melting technology for quick and economical fabrication of custom implant components.</p

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    Protein kinase Cδ expression in breast cancer as measured by real-time PCR, western blotting and ELISA

    Get PDF
    The protein kinase C (PKC) family of genes encode serine/threonine kinases that regulate proliferation, apoptosis, cell survival and migration. Multiple isoforms of PKC have been described, one of which is PKCδ. Currently, it is unclear whether PKCδ is involved in promoting or inhibiting cancer formation/progression. The aim of this study was therefore to investigate the expression of PKCδ in human breast cancer and relate its levels to multiple parameters of tumour progression. Protein kinase Cδ expression at the mRNA level was measured using real-time PCR (n=208) and at protein level by both immunoblotting (n=94) and ELISA (n=98). Following immunoblotting, two proteins were identified, migrating with molecular masses of 78 and 160 kDa. The 78 kDa protein is likely to be the mature form of PKCδ but the identity of the 160 kDa form is unknown. Levels of both these proteins correlated weakly but significantly with PKCδ concentrations determined by ELISA (for the 78 kDa form, r=0.444, P<0.005, n=91 and for the 160 kDa form, r=0.237, P=0.023, n=91) and with PKCδ mRNA levels (for the 78 kDa form, r=0.351, P=0.001, n=94 and for the 160 kDa form, r=0.216, P=0.037, n=94). Protein kinase Cδ mRNA expression was significantly higher in oestrogen receptor (ER)-positive compared with ER-negative tumours (P=0.007, Mann–Whitney U-test). Increasing concentrations of PKCδ mRNA were associated with reduced overall patient survival (P=0.004). Our results are consistent with a role for PKCδ in breast cancer progression

    Two-Photon Fluorescence Microscopy Imaging of Cellular Oxidative Stress Using Profluorescent Nitroxides

    Get PDF
    A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration

    Antiproliferative activity of PEP005, a novel ingenol angelate that modulates PKC functions, alone and in combination with cytotoxic agents in human colon cancer cells

    Get PDF
    PEP005 is a novel ingenol angelate that modulates protein kinases C (PKC) functions by activating PKCδ and inhibiting PKCα. This study assessed the antiproliferative effects of PEP005 alone and in combination with several other anticancer agents in a panel of 10 human cancer cell lines characterised for expression of several PKC isoforms. PEP005 displayed antiproliferative effects at clinically relevant concentrations with a unique cytotoxicity profile that differs from that of most other investigated cytotoxic agents, including staurosporine. In a subset of colon cancer cells, the IC50 of PEP005 ranged from 0.01–140 μM. The antiproliferative effects of PEP005 were shown to be concentration- and time-dependent. In Colo205 cells, apoptosis induction was observed at concentrations ranging from 0.03 to 3 μM. Exposure to PEP005 also induced accumulation of cells in the G1 phase of the cell cycle. In addition, PEP005 increased the phosphorylation of PKCδ and p38. In Colo205 cells, combinations of PEP005 with several cytotoxic agents including oxaliplatin, SN38, 5FU, gemcitabine, doxorubicin, vinorelbine, and docetaxel yielded sequence-dependent antiproliferative effects. Cell cycle blockage induced by PEP005 in late G1 lasted for up to 24 h and therefore a 24 h lag-time between PEP005 and subsequent exposure to cytotoxics was required to optimise PEP005 combinations with several anticancer agents. These data support further evaluation of PEP005 as an anticancer agent and may help to optimise clinical trials with PEP005-based combinations in patients with solid tumours

    Where Do Neurologists Look When Viewing Brain CT Images? An Eye-Tracking Study Involving Stroke Cases

    Get PDF
    The aim of this study was to investigate where neurologists look when they view brain computed tomography (CT) images and to evaluate how they deploy their visual attention by comparing their gaze distribution with saliency maps. Brain CT images showing cerebrovascular accidents were presented to 12 neurologists and 12 control subjects. The subjects' ocular fixation positions were recorded using an eye-tracking device (Eyelink 1000). Heat maps were created based on the eye-fixation patterns of each group and compared between the two groups. The heat maps revealed that the areas on which control subjects frequently fixated often coincided with areas identified as outstanding in saliency maps, while the areas on which neurologists frequently fixated often did not. Dwell time in regions of interest (ROI) was likewise compared between the two groups, revealing that, although dwell time on large lesions was not different between the two groups, dwell time in clinically important areas with low salience was longer in neurologists than in controls. Therefore it appears that neurologists intentionally scan clinically important areas when reading brain CT images showing cerebrovascular accidents. Both neurologists and control subjects used the “bottom-up salience” form of visual attention, although the neurologists more effectively used the “top-down instruction” form

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates
    corecore