137 research outputs found

    “Once you’ve been there, you’re always recovering”: exploring experiences, outcomes, and benefits of substance misuse recovery

    Get PDF
    Purpose – Recovery is a central component of UK substance misuse policy, however, relatively little is known about the views and meanings of recovery by those experiencing it. The purpose of this paper is to explore these factors, and understand how service user experiences align to current understandings of “recovery capital”. Design/methodology/approach – This paper draws on qualitative interviews with 32 individuals from six UK recovery communities, including those commissioned by a statutory service (n=8) and a peer-led recovery community (n=24). Findings – Meanings of recovery differed between people in abstinence-based communities and those not; however, all had consistent views on their own recovery outcomes and the benefits they believed recovery brought. All viewed recovery as a process; a continuous journey with no end-point. Internal motivation, peer support, social networks and daily structure were integral to supporting individuals achieve and maintain recovery. Key benefits of recovery reflected recovery capital and included positive relationships, sense of belonging, increased self-worth and confidence, employment and education. Research limitations/implications – This research shows that recovery experiences and outcomes are not centred entirely on the individual but are wider, more holistic. Maintaining recovery involves being connected to themselves and to the wider environment: family, friends, peers and society. Although the recovery capital model has many elements that were discussed by the participants of this research, the discourse they used does not align with the model. To validly measure and quantify recovery outcomes, individuals need to identify with the measures themselves. Practical implications – From policy and commissioning perspectives, these findings suggest benefits of recovery that were viewed by participants as indicators of success: demonstrate elements which support recovery; and highlight key social value outcomes which people attribute to recovery. Social implications – These “softer”, qualitative benefits should be considered by policy-makers, commissioners, statutory and non-statutory services in order to evidence outcomes. However, it should also be recognised that a temporally static approach to assessing recovery may be in contradiction to the meaning and perspectives held by those in recovery communities who conceptualise it as a long term and ongoing process. Originality/value – This paper adds to understandings of experiences and meanings of recovery, with a particular focus on the measurement of outcomes and their meanings, and the role of abstention and continued drug use within the recovery process. © 2016, Emerald Group Publishing Limited

    Practical Application of Sociology in Systems Engineering

    Get PDF
    Systems engineering involves both the integration of the system and the integration of the disciplines which develop and operate the system. Integrating the disciplines is a sociological effort to bring together different groups, who often have different terminology, to achieve a common goal, the system. The focus for the systems engineer is information flow through the organization, between the disciplines, to ensure the system is developed and operated will all relevant information informing system decisions. The practical application of the sociology in systems engineering brings in various organizational development concepts including the principles of planned renegotiation and the application of principles to address information barriers created by organizational culture. Concepts such as specification of ignorance, consistent terminology, opportunity structures, role-sets, and the reclama (reconsideration) process are all important sociological approaches that help address the organizational social structure (culture). In bringing the disciplines together, the systems engineer must also be wary of social ambivalence, social anomie, social dysfunction, and insider-outsider behavior. Unintended consequences can result when these social issues are present. These issues can occur when localized subcultures shift from the overarching organizational culture, or when the organizational culture prevents achievement of system goals. These sociological principles provide the systems engineer with key approaches to manage the information flow through the organization as the disciplines are integrated and share their information and provides key sociological barriers to information flow through the organization. This paper will discuss the practical application of sociological principles to systems engineering

    Gamma-Ray Burst Detection with Poisson-FOCuS and Other Trigger Algorithms

    Get PDF
    We describe how a novel online change-point detection algorithm, called Poisson-FOCuS, can be used to optimally detect gamma-ray bursts within the computational constraints imposed by miniaturized satellites such as the upcoming HERMES-Pathfinder constellation. Poisson-FOCuS enables testing for gamma-ray burst onset at all intervals in a count time series, across all timescales and offsets, in real time and at a fraction of the computational cost of conventional strategies. We validate an implementation with automatic background assessment through exponential smoothing, using archival data from Fermi-GBM. Through simulations of lightcurves modeled after real short and long gamma-ray bursts, we demonstrate that the same implementation has higher detection power than algorithms designed to emulate the logic of Fermi-GBM and Compton-BATSE, reaching the performance of a brute-force benchmark with oracle information on the true background rate, when not hindered by automatic background assessment. Finally, using simulated data with different lengths and means, we show that Poisson-FOCuS can analyze data twice as fast as a similarly implemented benchmark emulator for the historic Fermi-GBM on-board trigger algorithms

    Neurological Disease Detection and Monitoring from Voice Production

    Get PDF
    The dramatic impact of neurological degenerative pathologies in life quality is a growing concern. It is well known that many neurological diseases leave a fingerprint in voice and speech production. Many techniques have been designed for the detection, diagnose and monitoring the neurological disease. Most of them are costly or difficult to extend to primary attention medical services. Through the present paper it will be shown how some neurological diseases can be traced at the level of phonation. The detection procedure would be based on a simple voice test. The availability of advanced tools and methodologies to monitor the organic pathology of voice would facilitate the implantation of these tests. The paper hypothesizes that some of the underlying mechanisms affecting the production of voice produce measurable correlates in vocal fold biomechanics. A general description of the methodological foundations for the voice analysis system which can estimate correlates to the neurological disease is shown. Some study cases will be presented to illustrate the possibilities of the methodology to monitor neurological diseases by voic

    Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    Get PDF
    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg[superscript 0]) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg[superscript 2 +]) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg[superscript 0], has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg[superscript 0] emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The model can generally reproduce both spatial variations and long-term trends in total gaseous mercury concentrations and wet deposition fluxes.National Science Foundation (U.S.) (Atmospheric Chemistry Program Grant 1053648

    Netrin-3 Signals Through Serine Phosphorylation in Tetrahymena thermophila

    Get PDF
    The netrin family of proteins are structurally related to laminin and, while first discovered in the nematode Caenorhabditis elegans, are now known to be present in species throughout the animal kingdom, including humans. These proteins also have a wide variety of roles that include inhibition of apoptosis, chemorepulsion, and axonal guidance. Due to the results of previous studies involving netrin-1 in vertebrate systems, the current prevailing assumption is that netrins, when acting as chemorepellents, signal using tyrosine kinases. However, data that we gathered through phosphoserine-targeting ELISA assays and immunofluorescence microscopy demonstrates that the netrin-3 peptides signal Tetrahymena thermophila through serine phosphorylation instead, causing the ciliate protists to avoid netrin-3 peptides in response. Treatment with netrin-3 peptides also seems to cause mitotic inhibition in Tetrahymena, which can be reversed by addition of a serine kinase inhibitor. This new information suggests that netrin-3 may have physiological roles that have previously been unexplored

    Wndchrm – an open source utility for biological image analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological imaging is an emerging field, covering a wide range of applications in biological and clinical research. However, while machinery for automated experimenting and data acquisition has been developing rapidly in the past years, automated image analysis often introduces a bottleneck in high content screening.</p> <p>Methods</p> <p><it>Wndchrm </it>is an open source utility for biological image analysis. The software works by first extracting image content descriptors from the raw image, image transforms, and compound image transforms. Then, the most informative features are selected, and the feature vector of each image is used for classification and similarity measurement.</p> <p>Results</p> <p><it>Wndchrm </it>has been tested using several publicly available biological datasets, and provided results which are favorably comparable to the performance of task-specific algorithms developed for these datasets. The simple user interface allows researchers who are not knowledgeable in computer vision methods and have no background in computer programming to apply image analysis to their data.</p> <p>Conclusion</p> <p>We suggest that <it>wndchrm </it>can be effectively used for a wide range of biological image analysis tasks. Using <it>wndchrm </it>can allow scientists to perform automated biological image analysis while avoiding the costly challenge of implementing computer vision and pattern recognition algorithms.</p

    Pattern Recognition Software and Techniques for Biological Image Analysis

    Get PDF
    The increasing prevalence of automated image acquisition systems is enabling new types of microscopy experiments that generate large image datasets. However, there is a perceived lack of robust image analysis systems required to process these diverse datasets. Most automated image analysis systems are tailored for specific types of microscopy, contrast methods, probes, and even cell types. This imposes significant constraints on experimental design, limiting their application to the narrow set of imaging methods for which they were designed. One of the approaches to address these limitations is pattern recognition, which was originally developed for remote sensing, and is increasingly being applied to the biology domain. This approach relies on training a computer to recognize patterns in images rather than developing algorithms or tuning parameters for specific image processing tasks. The generality of this approach promises to enable data mining in extensive image repositories, and provide objective and quantitative imaging assays for routine use. Here, we provide a brief overview of the technologies behind pattern recognition and its use in computer vision for biological and biomedical imaging. We list available software tools that can be used by biologists and suggest practical experimental considerations to make the best use of pattern recognition techniques for imaging assays

    High methylmercury in Arctic and subarctic ponds is related to nutrient levels in the warming eastern Canadian Arctic

    Get PDF
    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L−1). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3−2.2 ng L−1) than polygonal ponds (0.1−0.3 ng L−1) or lakes (<0.1 ng L−1). High MeHg was measured in the bottom waters of Subarctic thaw ponds near Kuujjuarapik (0.1−3.1 ng L−1). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems
    corecore