8,387 research outputs found

    Interband polarized absorption in InP polytypic superlattices

    Get PDF
    Recent advances in growth techniques have allowed the fabrication of semiconductor nanostructures with mixed wurtzite/zinc-blende crystal phases. Although the optical characterization of these polytypic structures is well eported in the literature, a deeper theoretical understanding of how crystal phase mixing and quantum confinement change the output linear light polarization is still needed. In this paper, we theoretically investigate the mixing effects of wurtzite and zinc-blende phases on the interband absorption and in the degree of light polarization of an InP polytypic superlattice. We use a single 8×\times8 k\cdotp Hamiltonian that describes both crystal phases. Quantum confinement is investigated by changing the size of the polytypic unit cell. We also include the optical confinement effect due to the dielectric mismatch between the superlattice and the vaccum and we show it to be necessary to match experimental results. Our calculations for large wurtzite concentrations and small quantum confinement explain the optical trends of recent photoluminescence excitation measurements. Furthermore, we find a high sensitivity to zinc-blende concentrations in the degree of linear polarization. This sensitivity can be reduced by increasing quantum confinement. In conclusion, our theoretical analysis provides an explanation for optical trends in InP polytypic superlattices, and shows that the interplay of crystal phase mixing and quantum confinement is an area worth exploring for light polarization engineering.Comment: 9 pages, 6 figures and 1 tabl

    Spin Chains in an External Magnetic Field. Closure of the Haldane Gap and Effective Field Theories

    Full text link
    We investigate both numerically and analytically the behaviour of a spin-1 antiferromagnetic (AFM) isotropic Heisenberg chain in an external magnetic field. Extensive DMRG studies of chains up to N=80 sites extend previous analyses and exhibit the well known phenomenon of the closure of the Haldane gap at a lower critical field H_c1. We obtain an estimate of the gap below H_c1. Above the lower critical field, when the correlation functions exhibit algebraic decay, we obtain the critical exponent as a function of the net magnetization as well as the magnetization curve up to the saturation (upper critical) field H_c2. We argue that, despite the fact that the SO(3) symmetry of the model is explicitly broken by the field, the Haldane phase of the model is still well described by an SO(3) nonlinear sigma-model. A mean-field theory is developed for the latter and its predictions are compared with those of the numerical analysis and with the existing literature.Comment: 11 pages, 4 eps figure

    On the use of scaling relations for the Tolman test

    Get PDF
    The use of relations between structural parameters of early type galaxies to perform the Tolman test is reconsidered. Scaling relations such as the FP or the Kormendy relation, require the transformation from angular to metric sizes, to compare the relation at different z values. This transformation depends on the assumed world model: galaxies of a given angular size, at a given z, are larger (in kpc) in a non-expanding universe than in an expanding one. Furthermore, the luminosities of galaxies are expected to evolve with z in an expanding model. These effects are shown to conspire to reduce the difference between the predicted SB change with redshift in the expanding and non expanding cases. We find that the predictions for the visible photometric bands of the expanding models with passive luminosity evolution are very similar to those of the static model till z about 1, and therefore, the test cannot distinguish between the two world models. Recent good quality data are consistent with the predictions from both models. In the K-band, where the expected (model) luminosity evolutionary corrections are smaller, the differences between the xpanding and static models amount to about 0.4 (0.8) magnitudes at z = 0.4 (1). It is shown that, due to that small difference between the predictions in the covered z-range, and to the paucity and uncertainties of the relevant SB photometry, the existing K-band data is not adequate to distinguish between the different world metrics, and cannot be yet used to discard the static case. It is pointed out that the scaling relations could still be used to rule out the non-evolving case if it could be shown that the coefficients change with the redshift.Comment: Latex, 15 pages with 2 figures. To be published in ApJ Letter

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure

    A comparative analysis of the observed white dwarf cooling sequence from globular clusters

    Get PDF
    We report our study of features at the observed red end of the white dwarf cooling sequences for three Galactic globular clusters: NGC\,6397, 47\,Tucanae and M\,4. We use deep colour-magnitude diagrams constructed from archival Hubble Space Telescope (ACS) to systematically investigate the blue turn at faint magnitudes and the age determinations for each cluster. We find that the age difference between NGC\,6397 and 47\,Tuc is 1.980.26+0.44^{+0.44}_{-0.26}\,Gyr, consistent with the picture that metal-rich halo clusters were formed later than metal-poor halo clusters. We self-consistently include the effect of metallicity on the progenitor age and the initial-to-final mass relation. In contrast with previous investigations that invoked a single white dwarf mass for each cluster, the data shows a spread of white dwarf masses that better reproduce the shape and location of the blue turn. This effect alone, however, does not completely reproduce the observational data - the blue turn retains some mystery. In this context, we discuss several other potential problems in the models. These include possible partial mixing of H and He in the atmosphere of white dwarf stars, the lack of a good physical description of the collision-induced absorption process and uncertainties in the opacities at low temperatures. The latter are already known to be significant in the description of the cool main sequence. Additionally, we find that the present day local mass function of NGC\,6397 is consistent with a top-heavy type, while 47\,Tuc presents a bottom-heavy profile.Comment: Accepted for publication in MNRAS (16 pages, 19 figures

    Galaxy number counts- IV. surveying the Herschel deep field in the near-infrared

    Get PDF
    (abridged) We present results from two new near-infrared imaging surveys. One covers 47.2 arcmin^2 to K(3\sigma)<20 whilst a second, deeper survey covers a sub-area of 1.8 arcmin^2 to K(3\sigma)<22.75. Over the entire area we have extremely deep UBRI photometry. Our K- counts are consistent with the predictions of non-evolving models with 0 < q0 <0.5. The K-selected (B-K) galaxy colour distributions move sharply bluewards fainter than K~20 and at at brighter magnitudes (K<20) our observed colour distributions indicate a deficiency of red, early-type galaxies at z~1 in comparison with passively evolving models. This implies either a pure luminosity evolution (PLE) model with a low level of continuing star-formation following an an initial burst, or dynamical merging. At fainter magnitudes, the continuing bluewards trend observed in (B-K) can be explained purely in terms of passively evolving PLE models. Our observed numbers of (I-K)>4 galaxies at K<20 exhibit the same deficiency, suggesting that at least part of the larger deficit observed in (B-K) at K<20 may be due to star-formation rather than dynamical merging. Finally, as we and others have noted, the number-redshift distribution at 18<K<19 of recent, deep K- selected redshift surveys is well fitted by non-evolving models; passively evolving models with a Salpeter or Scalo initial mass functions overpredict the numbers of galaxies with z>1. Dynamical merging is one possible solution to reduce the numbers of these galaxies but a dwarf-dominated IMF for early-type galaxies could offer an alternative explanation; we show that this model reproduces both the optical-infrared colour distributions and the K- band galaxy counts.Comment: 15 pages, 9 figures, revised version, requires astrobib.sty, mn-abs.sty, submitted to MNRA

    Emission-Line Galaxy Surveys as Probes of the Spatial Distribution of Dwarf Galaxies. I. The University of Michigan Survey

    Full text link
    Objective-prism surveys which select galaxies on the basis of line-emission are extremely effective at detecting low-luminosity galaxies and constitute some of the deepest available samples of dwarfs. In this study, we confirm that emission-line galaxies (ELGs) in the University of Michigan (UM) objective-prism survey (MacAlpine et al. 1977-1981) are reliable tracers of large-scale structure, and utilize the depth of the samples to examine the spatial distribution of low-luminosity (MB>_{B} > -18.0) dwarfs relative to higher luminosity giant galaxies (MB_{B} \leq -18.0) in the Updated Zwicky Catalogue (Falco et al. 1999). New spectroscopic data are presented for 26 UM survey objects. We analyze the relative clustering properties of the overall starbursting ELG and normal galaxy populations, using nearest neighbor and correlation function statistics. This allows us to determine whether the activity in ELGs is primarily caused by gravitational interactions. We conclude that galaxy-galaxy encounters are not the sole cause of activity in ELGs since ELGs tend to be more isolated and are more often found in the voids when compared to their normal galaxy counterparts. Furthermore, statistical analyses performed on low-luminosity dwarf ELGs show that the dwarfs are less clustered when compared to their non-active giant neighbors. The UM dwarf samples have greater percentages of nearest neighbor separations at large values and lower correlation function amplitudes relative to the UZC giant galaxy samples. These results are consistent with the expectations of galaxy biasing.Comment: 17 pages, 4 tables, 10 figures. Accepted for publication in the Ap

    Noise Kernel in Stochastic Gravity and Stress Energy Bi-Tensor of Quantum Fields in Curved Spacetimes

    Full text link
    The noise kernel is the vacuum expectation value of the (operator-valued) stress-energy bi-tensor which describes the fluctuations of a quantum field in curved spacetimes. It plays the role in stochastic semiclassical gravity based on the Einstein-Langevin equation similar to the expectation value of the stress-energy tensor in semiclassical gravity based on the semiclassical Einstein equation. According to the stochastic gravity program, this two point function (and by extension the higher order correlations in a hierarchy) of the stress energy tensor possesses precious statistical mechanical information of quantum fields in curved spacetime and, by the self-consistency required of Einstein's equation, provides a probe into the coherence properties of the gravity sector (as measured by the higher order correlation functions of gravitons) and the quantum nature of spacetime. It reflects the low and medium energy (referring to Planck energy as high energy) behavior of any viable theory of quantum gravity, including string theory. It is also useful for calculating quantum fluctuations of fields in modern theories of structure formation and for backreaction problems in cosmological and black holes spacetimes. We discuss the properties of this bi-tensor with the method of point-separation, and derive a regularized expression of the noise-kernel for a scalar field in general curved spacetimes. One collorary of our finding is that for a massless conformal field the trace of the noise kernel identically vanishes. We outline how the general framework and results derived here can be used for the calculation of noise kernels for Robertson-Walker and Schwarzschild spacetimes.Comment: 22 Pages, RevTeX; version accepted for publication in PR

    Completely monotone outer approximations of lower probabilities on finite possibility spaces

    Get PDF
    Drawing inferences from general lower probabilities on finite possibility spaces usually involves solving linear programming problems. For some applications this may be too computationally demanding. Some special classes of lower probabilities allow for using computationally less demanding techniques. One such class is formed by the completely monotone lower probabilities, for which inferences can be drawn efficiently once their Möbius transform has been calculated. One option is therefore to draw approximate inferences by using a completely monotone approximation to a general lower probability; this must be an outer approximation to avoid drawing inferences that are not implied by the approximated lower probability. In this paper, we discuss existing and new algorithms for performing this approximation, discuss their relative strengths and weaknesses, and illustrate how each one works and performs
    corecore