141 research outputs found

    Macroalgal browsing on a heavily degraded, urbanized equatorial reef system

    Get PDF
    The removal of macroalgal biomass is critical to the health of coral reef ecosystems. Previous studies on relatively intact reefs with diverse and abundant fish communities have quantified rapid removal of macroalgae by herbivorous fishes, yet how these findings rel ate to degraded reef systems where fish diversity and abundance are markedly lower and algal biomass substantially higher, is unclear. We surveyed roving herbivorous fish communities and quantified their capacity to remove the dominant macroalga Sargassum ilicifolium on seven reefs in Singapore; a heavily degraded urbanized reef system. The diversity and abundance of herbivorous fishes was extremely low, with eight species and a mean abundance ~1.1 individuals 60 m -2 recorded across reefs. Consumption of S. ilicifolium varied with distance from Singapore's main port with consumption being 3- to 17-fold higher on reefs furthest from the port (Pulau Satumu: 4.18 g h -1 ; Kusu Island: 2.38 g h -1 ) than reefs closer to the port (0.35-0.78 g h -1 ). Video observations revealed a single species, Siganus virgatus, was almost solely responsible for removing S. ilicifolium biomass, accounting for 83% of the mass-standardized bites. Despite low herbivore diversity and intense urbanization, macroalgal removal by fishes on some Singaporean reefs was directly comparable to rates reported for other inshore Indo-Pacific reefs

    Fear effects and group size interact to shape herbivory on coral reefs

    Get PDF
    Fear of predators (‘fear effects’) is an important determinant of foraging decisions by consumers across a range of ecosystems. Group size is one of the main behavioural mechanisms for mitigating fear effects while also providing foraging benefits to group members. Within coral reef ecosystems, fear effects have been shown to influence the feeding rates of herbivorous fishes, a key functional group that prevents macroalgal overgrowth. Yet, how fear effects and group size interact to shape macroalgal removal on coral reefs remains unclear. Here, we conducted field-based experiments using models of a common piscivorous fish, the leopard coral grouper Plectropomus leopardus and a series of macroalgal Sargassum ilicifolium assays positioned at increasing distances from the models (1, 2, 3 and 4 m) on two coral reefs in Singapore to investigate how acute fear effects shape the intensity of herbivory, and whether these effects were influenced by variation in the group size of herbivorous fishes feeding on the assays. We found acute fear effects strongly influenced the foraging behaviour of herbivorous fishes over small spatial scales. Rates of Sargassum biomass removal, feeding rates and the total number of individual feeding events were all lower near the predator model. These effects dissipated rapidly with increasing distance from the predator model and were undetectable at a distance of 4 m. We also found generally larger group sizes of herbivorous fishes further from the predator model, presumably reflecting decreased risk. Furthermore, the number of individual bites/event increased significantly with increasing group size for two common browsing fishes, Siganus virgatus and Siganus javus. Our findings highlight that acute fear effects influence the distribution and intensity of herbivory over small spatial scales. Fear effects also interacted with herbivore group size resulting in changes in the number of individual feeding events and bite rates that collectively shape the realized ecosystem function of macroalgal removal on coral reefs. Group size is an important context-dependent factor that should be considered when examining fear effects on coral reefs. A free Plain Language Summary can be found within the Supporting Information of this article

    Fear effects and group size interact to shape herbivory on coral reefs

    Get PDF
    Fear of predators (‘fear effects’) is an important determinant of foraging decisions by consumers across a range of ecosystems. Group size is one of the main behavioural mechanisms for mitigating fear effects while also providing foraging benefits to group members. Within coral reef ecosystems, fear effects have been shown to influence the feeding rates of herbivorous fishes, a key functional group that prevents macroalgal overgrowth. Yet, how fear effects and group size interact to shape macroalgal removal on coral reefs remains unclear. Here, we conducted field-based experiments using models of a common piscivorous fish, the leopard coral grouper Plectropomus leopardus and a series of macroalgal Sargassum ilicifolium assays positioned at increasing distances from the models (1, 2, 3 and 4 m) on two coral reefs in Singapore to investigate how acute fear effects shape the intensity of herbivory, and whether these effects were influenced by variation in the group size of herbivorous fishes feeding on the assays. We found acute fear effects strongly influenced the foraging behaviour of herbivorous fishes over small spatial scales. Rates of Sargassum biomass removal, feeding rates and the total number of individual feeding events were all lower near the predator model. These effects dissipated rapidly with increasing distance from the predator model and were undetectable at a distance of 4 m. We also found generally larger group sizes of herbivorous fishes further from the predator model, presumably reflecting decreased risk. Furthermore, the number of individual bites/event increased significantly with increasing group size for two common browsing fishes, Siganus virgatus and Siganus javus. Our findings highlight that acute fear effects influence the distribution and intensity of herbivory over small spatial scales. Fear effects also interacted with herbivore group size resulting in changes in the number of individual feeding events and bite rates that collectively shape the realized ecosystem function of macroalgal removal on coral reefs. Group size is an important context-dependent factor that should be considered when examining fear effects on coral reefs

    Compartmental fat distribution in the abdomen of dogs relative to overall body fat composition

    Get PDF
    Background: Adipose tissue may have different metabolic and endocrine functions depending on the region of the body in which it is located. While visceral or intra-abdominal fat has been found to contribute to leptin concentrations, insulin resistance and obesity-related diseases, there are only a few imaging studies documenting the preferential distribution of body fat to either the intra-abdominal or subcutaneous compartments in dogs. This study aimed to determine if CT-measured abdominal fat distributed preferentially to the visceral space (V) relative to the subcutaneous space (SQ), with increasing DXA-determined total body fat percentage; and if ultrasound measurements of the ventral midline subcutaneous (SAT) and visceral adipose thickness (VAT) can be used to estimate the distribution of fat to the subcutaneous and visceral abdominal spaces, in a sample of 22 dogs with variable body condition. Results: Multivariate analysis showed no statistically significant correlation between visceral to subcutaneous fat ratio (V/SQ) and increasing total body fat percentage (β = − 0.07, p = 0.733), but strong correlation with age (β = 0.71 p = 0.002). A substantial amount of variation for the ultrasound visceral adipose thickness to subcutaneous fat thickness (VAT/SAT) could be explained by both CT V/SQ and sex (R2 Adjusted = 0.477, p = 0.001), with female dogs having significant lower VAT/SAT ratios compared to the male dogs (p = 0.047). The ultrasound fat measurements appeared moderately reliable, but a larger sample number is required to confirm this. Conclusions: The findings suggest that dogs with a relatively healthy to slightly overweight body condition score, distribute fat relatively similarly between their peritoneal (visceral) and subcutaneous abdominal compartments with increasing total body fat percentage. However, there was increased fat distribution to the peritoneal space relative to the subcutaneous space with increasing age. Further, abdominal ultrasound may be useful in estimating the ratio of fat distribution to both the abdominal visceral and subcutaneous space

    Cinnamon: A Natural Feed Additive for Poultry Health and Production—A Review

    Get PDF
    The increased bacterial resistance to synthetic antibiotics and consumer awareness about the health and food safety concerns have triggered the ban on the use of antibiotic growth promotors (AGPs) in the poultry industry. This situation encouraged the poultry sector and industry to explore safe alternatives to AGPs and focus on developing more sustainable feed management strategies to improve the intestinal health and growth performance of poultry. Consequently, phytogenic feed additives (PFAs) have emerged as natural alternatives to AGPs and have great potential in the poultry industry. In recent years, cinnamon (one of the most widely used spices) has attracted attention from researchers as a natural product with numerous health benefits for poultry. The essential oils in cinnamon, in particular, are of interest because of their antioxidant, anti-microbial, anti-inflammatory, antifungal, and hypocholesterolaemic effects, in addition to their ability to stimulate digestive enzymes in the gut. This review mainly emphasizes the potential impact of cinnamon as a natural feed additive on overall gut health, nutrient digestibility, blood biochemical profile, gene expression, gut microbiota and immune response

    Differences in Hedonic Responses, Facial Expressions and Self-Reported Emotions of Consumers Using Commercial Yogurts: A Cross-Cultural Study

    Get PDF
    Hedonic scale testing is a well-accepted methodology for assessing consumer perceptions but is compromised by variation in voluntary responses between cultures. Check-all-that-apply (CATA) methods using emotion terms or emojis and facial expression recognition (FER) are emerging as more powerful tools for consumer sensory testing as they may offer improved assessment of voluntary and involuntary responses, respectively. Therefore, this experiment compared traditional hedonic scale responses for overall liking to (1) CATA emotions, (2) CATA emojis and (3) FER. The experiment measured voluntary and involuntary responses from 62 participants of Asian (53%) versus Western (47%) origin, who consumed six divergent yogurt formulations (Greek, drinkable, soy, coconut, berry, cookies). The hedonic scales could discriminate between yogurt formulations but could not distinguish between responses across the cultural groups. Aversive responses to formulations were the easiest to characterize for all methods; the hedonic scale was the only method that could not characterize differences in cultural preferences, with CATA emojis displaying the highest level of discrimination. In conclusion, CATA methods, particularly the use of emojis, showed improved characterization of cross-cultural preferences of yogurt formulations compared to hedonic scales and FER

    Feedlot Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef

    Get PDF
    It has been well-established that dark cutting (DC) is a multifactorial issue that is associated with numerous animal and management factors. However, there is limited understanding of the feedlot-based factors that contribute to the influence of DC. The aim of this study was to evaluate the effect of climate, animal, and feedlot factors on the incidence of pH non-compliance in Australian grain-fed cattle. For this study, feedlot and abattoir records from 142,228 individual cattle over a 1-year period were investigated. These data incorporated records from seven feedlots that consigned cattle to three abattoirs. The average incidence of DC in these carcasses was 2.8%. The production factors that were associated with increased risk of DC included feedlot, sex, hormone growth promotants (HGP), cattle health, and days on feed (DOF). Additionally, DC also increased by reduced solar radiation (SR, W/m2), lower wind speeds (WS, m/s), increased ambient temperature (TA, °C), higher rainfall, a higher average temperature–humidity index (THI), and increased duration of time above heat-load-index threshold of 86 (HLI ≥ 86) during the 7 days prior to feedlot departure. This study identified the feedlot factors that increase the risk of DC from a feedlot-management perspective

    Abattoir Factors Influencing the Incidence of Dark Cutting in Australian Grain-Fed Beef

    Get PDF
    The aim of this study was to evaluate the effect of carcass traits, lairage time and weather conditions during lairage and abattoir factors that impact the incidence of dark cutting in 142,228 grain-fed carcasses, as defined by Meat Standards Australia (MSA) guidelines. This study was conducted over a 12-month period analysing data from cattle that were supplied from seven feedlots and processed at three abattoirs. Abattoir data indicated that the average incidence of dark cutting within the study was 2.8%. Increased wind speeds (WSs) and rain during lairage at the abattoir was associated with an increased risk of dark cutting, whereas variation in ambient temperature and/or relative humidity did not influence dark cutting. Heavier carcasses with whiter fat, larger hump heights, more rib fat, higher marble scores and lower ossification had lower incidences of dark cutting. The factors abattoir, time in lairage, time to grading and grader within Abattoir had significant effects on the incidence of dark cutting. The results from this study suggest that reducing the time in lairage and increasing the time between slaughter and grading are the two major ways to reduce dark cutting in MSA carcasses
    corecore